(浙江專(zhuān)用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 課時(shí)跟蹤檢測(cè)(一)小題考法——平面向量

上傳人:xt****7 文檔編號(hào):106737456 上傳時(shí)間:2022-06-13 格式:DOC 頁(yè)數(shù):11 大小:174KB
收藏 版權(quán)申訴 舉報(bào) 下載
(浙江專(zhuān)用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 課時(shí)跟蹤檢測(cè)(一)小題考法——平面向量_第1頁(yè)
第1頁(yè) / 共11頁(yè)
(浙江專(zhuān)用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 課時(shí)跟蹤檢測(cè)(一)小題考法——平面向量_第2頁(yè)
第2頁(yè) / 共11頁(yè)
(浙江專(zhuān)用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 課時(shí)跟蹤檢測(cè)(一)小題考法——平面向量_第3頁(yè)
第3頁(yè) / 共11頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《(浙江專(zhuān)用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 課時(shí)跟蹤檢測(cè)(一)小題考法——平面向量》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專(zhuān)用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 課時(shí)跟蹤檢測(cè)(一)小題考法——平面向量(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、(浙江專(zhuān)用)2022高考數(shù)學(xué)二輪復(fù)習(xí) 課時(shí)跟蹤檢測(cè)(一)小題考法——平面向量 一、選擇題 1.已知平面向量a=(3,4),b=,若a∥b,則實(shí)數(shù)x為(  ) A.-          B. C. D.- 解析:選C ∵a∥b,∴3×=4x,解得x=,故選C. 2.(2019屆高三·杭州六校聯(lián)考)已知向量a和b的夾角為120°,且|a|=2,|b|=5,則(2a-b)·a=(  ) A.9 B.10 C.12 D.13 解析:選D ∵向量a和b的夾角為120°, 且|a|=2,|b|=5, ∴a·b=2×5×cos 120°=-5, ∴(2a-b)·a=2

2、a2-a·b=2×4+5=13, 故選D. 3.(2018·全國(guó)卷Ⅰ)在△ABC中,AD為BC邊上的中線,E為AD的中點(diǎn),則=(  ) A.- B.- C.+ D.+ 解析:選A 作出示意圖如圖所示.=+=+=×(+)+(-)=-.故選A. 4.設(shè)向量a=(-2,1),a+b=(m,-3),c=(3,1),若(a+b)⊥c,則cos〈a,b〉=(  ) A.- B. C. D.- 解析:選D 由(a+b)⊥c可得,m×3+(-3)×1=0,解得m=1.所以a+b=(1,-3),故b=(a+b)-a=(3,-4). 所以cos〈a,b〉===-,故選D

3、. 5.P是△ABC所在平面上一點(diǎn),滿足|-|-|+-2|=0,則△ABC的形狀是(  ) A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等邊三角形 解析:選B ∵P是△ABC所在平面上一點(diǎn),且|-|-|+-2|=0, ∴||-|(-)+(-)|=0, 即||=|+|, ∴|-|=|+|, 兩邊平方并化簡(jiǎn)得·=0, ∴⊥,∴∠A=90°, 則△ABC是直角三角形. 6.(2018·浙江二模)如圖,設(shè)A,B是半徑為2的圓O上的兩個(gè)動(dòng)點(diǎn),點(diǎn)C為AO中點(diǎn),則·的取值范圍是(  ) A.[-1,3]        B.[1,3] C.[-3,-1] D.

4、[-3,1] 解析:選A 建立平面直角坐標(biāo)系如圖所示, 可得O(0,0),A(-2,0),C(-1,0),設(shè)B(2cos θ,2sin θ).θ∈[0,2π). 則·=(1,0)·(2cos θ+1,2sin θ)=2cos θ+1∈[-1,3]. 故選A. 7.(2019屆高三·浙江名校聯(lián)考)已知在△ABC中,AB=4,AC=2,AC⊥BC,D為AB的中點(diǎn),點(diǎn)P滿足=+,則·(+)的最小值為(  ) A.-2 B.- C.- D.- 解析:選C 由=+知點(diǎn)P在直線CD上,以點(diǎn)C為坐標(biāo)原點(diǎn),CB所在直線為x軸,CA所在直線為y軸建立如圖所示的平面直角坐標(biāo)系,則C(0,0

5、),A(0,2),B(2,0),D(,1),∴直線CD的方程為y=x,設(shè)P,則=,=,=,∴+=,∴·(+)=-x(2-2x)+x2-x=x2-x=2-,∴當(dāng)x=時(shí),·(+)取得最小值-. 8.已知單位向量a,b,c是共面向量,a·b=,a·c=b·c<0,記m=|λa-b|+|λa-c|(λ∈R),則m2的最小值是(  ) A.4+ B.2+ C.2+ D.4+ 解析:選B 由a·c=b·c,可得c·(a-b)=0,故c與a-b垂直,又a·c=b·c<0,記=a,=b,=c,以O(shè)為坐標(biāo)原點(diǎn),的方向?yàn)閤軸正方向建立如圖所示的平面直角坐標(biāo)系,設(shè)=λa,則|λa-b|+|λa-c|

6、=||+||≥|b-c|=||,由圖可知最小值為BC,易知∠OBC=∠BCO=15°,所以∠BOC=150°,在△BOC中,BC2=BO2+OC2-2BO·OC·cos∠BOC=2+.所以m2的最小值是2+. 9.在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若=λ+μ,則λ+μ的最大值為(  ) A.3 B.2 C. D.2 解析:選A 以A為坐標(biāo)原點(diǎn),AB,AD所在直線分別為x軸,y軸建立如圖所示的平面直角坐標(biāo)系,則A(0,0),B(1,0),C(1,2),D(0,2),可得直線BD的方程為2x+y-2=0,點(diǎn)C到直線BD的距離為=,所以圓C

7、:(x-1)2+(y-2)2=. 因?yàn)镻在圓C上,所以P. 又=(1,0),=(0,2),=λ+μ=(λ,2μ), 所以 λ+μ=2+cos θ+sin θ=2+sin(θ+φ)≤3(其中tan φ=2),當(dāng)且僅當(dāng)θ=+2kπ-φ,k∈Z時(shí),λ+μ取得最大值3. 10.如圖,在四邊形ABCD中,點(diǎn)E,F(xiàn)分別是邊AD,BC的中點(diǎn),設(shè)·=m,·=n.若AB=,EF=1,CD=,則(  ) A.2m-n=1 B.2m-2n=1 C.m-2n=1 D.2n-2m=1 解析:選D ·=(+)·(-+)=-2+·-·+·=-2+·(-)+m=-2+·(++-)+m=·+m.又=

8、++,=++,兩式相加,再根據(jù)點(diǎn)E,F(xiàn)分別是邊AD,BC的中點(diǎn),化簡(jiǎn)得2=+,兩邊同時(shí)平方得4=2+3+2·,所以·=-,則·=,所以n=+m,即2n-2m=1,故選D. 二、填空題 11.(2018·龍巖模擬)已知向量a,b夾角為60°,且|a|=1,|2a-b|=2,則|b|=________. 解析:∵|2a-b|=2,∴4a2-4a·b+b2=12, ∴4×12-4×1×|b|cos 60°+|b|2=12, 即|b|2-2|b|-8=0, 解得|b|=4. 答案:4 12.(2019屆高三·寧波效實(shí)模擬)如圖,在平面四邊形ABCD中,|AC|=3,|BD|=4,則(+

9、)·(+)=________. 解析:∵在平面四邊形ABCD中,|AC|=3,|BD|=4, ∴+=+++=+=-, +=+++=+, ∴(+)·(+)=(-)(+)=2-2=9-16=-7. 答案:-7 13.設(shè)向量a,b滿足|a+b|=2|a-b|,|a|=3,則|b|的最大值是________;最小值是________. 解析:由|a+b|=2|a-b|兩邊平方,得a2+2a·b+b2=4(a2-2a·b+b2),化簡(jiǎn)得到3a2+3b2=10a·b≤10|a||b|,|b|2-10|b|+9≤0,解得1≤|b|≤9. 答案:9 1 14.(2018·嘉興期末)在Rt△A

10、BC中,AB=AC=2,D為AB邊上的點(diǎn),且=2,則·=________;若=x+y,則xy=________. 解析:以A為坐標(biāo)原點(diǎn),,分別為x軸,y軸的正方向建立如圖所示的平面直角坐標(biāo)系,則A(0,0),B(2,0),C(0,2),D,所以·=·(0,-2)=4.由=x+y,得=x(0,-2)+y(2,-2),所以=2y,-2=-2x-2y,解得x=,y=,所以xy=. 答案:4  15.(2018·溫州二模)若向量a,b滿足(a+b)2-b2=|a|=3,且|b|≥2,則a·b=________,a在b方向上的投影的取值范圍是________. 解析:向量a,b滿足(a+b)2-

11、b2=|a|=3, ∴a2+2a·b+b2-b2=3, ∴9+2a·b=3,∴a·b=-3; 則a在b方向上的投影為|a|cos θ==, 又|b|≥2,∴-≤<0, ∴a在b方向上的投影取值范圍是. 答案:-3  16.(2018·溫州適應(yīng)性測(cè)試)已知向量a,b滿足|a|=|b|=a·b=2,向量x=λa+(1-λ)b,向量y=ma+nb,其中λ,m,n∈R,且m>0,n>0.若(y-x)·(a+b)=6,則m2+n2的最小值為_(kāi)_______. 解析:法一:依題意得,[ma+nb-λa-(1-λ)b]·(a+b)=6,所以[(m-λ)a+(n-1+λ)b]·(a+b

12、)=6,因?yàn)閨a|=|b|=a·b=2,所以4(m-λ)+4(n-1+λ)+2[(m-λ)+(n-1+λ)]=6,所以m+n-1=1,即m+n=2,所以m2+n2=m2+(2-m)2=2m2-4m+4=2(m-1)2+2≥2,當(dāng)且僅當(dāng)m=1時(shí)取等號(hào),所以m2+n2的最小值為2. 法二:依題意得,[ma+nb-λa-(1-λ)b]·(a+b)=6, 即[(m-λ)a+(n-1+λ)b]·(a+b)=6, 因?yàn)閨a|=|b|=a·b=2,所以4(m-λ)+4(n-1+λ)+2[(m-λ)+(n-1+λ)]=6, 所以m+n-1=1,即m+n=2,所以m2+n2=(m+n)2-2mn=4-2

13、mn≥4-22=2,當(dāng)且僅當(dāng)m=n=1時(shí)取等號(hào),所以m2+n2的最小值為2. 答案:2 17.已知在△ABC中,AC⊥AB,AB=3,AC=4.若點(diǎn)P在△ABC的內(nèi)切圓上運(yùn)動(dòng),則·(+)的最小值為_(kāi)_______,此時(shí)點(diǎn)P的坐標(biāo)為_(kāi)_______. 解析:因?yàn)锳C⊥AB,所以以A為坐標(biāo)原點(diǎn),以AB,AC所在的直線分別為x軸,y軸建立如圖所示的平面直角坐標(biāo)系,則A(0,0),B(3,0),C(0,4).由題意可知△ABC內(nèi)切圓的圓心為D(1,1),半徑為1.因?yàn)辄c(diǎn)P在△ABC的內(nèi)切圓上運(yùn)動(dòng),所以可設(shè)P(1+cos θ,1+sin θ)(0≤θ<2π).所以=(-1-cos θ,-1-sin

14、 θ),+=(1-2cos θ,2-2sin θ),所以·(+)=(-1-cos θ)(1-2cos θ)+(-1-sin θ)(2-2sin θ)=-1+cos θ+2cos2 θ-2+2sin2 θ=-1+cos θ≥-1-1=-2,當(dāng)且僅當(dāng)cos θ=-1,即P(0,1)時(shí),·(+)取到最小值,且最小值為-2. 答案:-2 (0,1) B組——能力小題保分練 1.已知△ABC是邊長(zhǎng)為1的等邊三角形,點(diǎn)D,E分別是邊AB,BC的中點(diǎn),連接DE并延長(zhǎng)到點(diǎn)F,使得DE=2EF,則·的值為(  ) A.- B. C. D. 解析:選B 如圖所示,=+. 又D,E分別為AB,

15、BC的中點(diǎn),且DE=2EF,所以=,=+=, 所以=+. 又=-, 則·=·(-) =·-2+2-· =2-2-·=||2-||2-×||×||×cos∠BAC. 又||=||=1,∠BAC=60°, 故·=--×1×1×=. 2.如圖,在等腰梯形ABCD中,已知DC∥AB,∠ADC=120°,AB=4,CD=2,動(dòng)點(diǎn)E和F分別在線段BC和DC上,且=,=λ,則·的最小值是(  ) A.4+13 B.4-13 C.4+ D.4- 解析:選B 在等腰梯形ABCD中,AB=4,CD=2,∠ADC=120°,易得AD=BC=2.由動(dòng)點(diǎn)E和F分別在線段BC和DC上得,所以

16、<λ<1.所以·=(+)·(+)=·+·+·+·=||·||cos 120°+||·||-||·||+||·||cos 60°=4×2×+×2-4×(1-λ)×2+×(1-λ)×2×=-13+8λ+≥-13+2=4-13,當(dāng)且僅當(dāng)λ=時(shí)取等號(hào).所以·的最小值是4-13. 3.(2018·臺(tái)州一模)已知單位向量e1,e2,且e1·e2=-,若向量a滿足(a-e1)·(a-e2)=,則|a|的取值范圍為(  ) A. B. C. D. 解析:選B ∵單位向量e1,e2,且e1·e2=-, ∴〈e1,e2〉=120°, ∴|e1+e2|= =1. 若向量a滿足(a-e1)·(a

17、-e2)=, 則a2-a·(e1+e2)+e1·e2=, ∴|a|2-a·(e1+e2)=, ∴|a|2-|a|·cos〈a,e1+e2〉=, 即cos〈a,e1+e2〉=. ∵-1≤cos〈a,e1+e2〉≤1, ∴-1≤|a|-≤1, 解得-≤|a|≤+, ∴|a|的取值范圍為. 4.(2017·麗水模擬)在△ABC和△AEF中,B是EF的中點(diǎn),AB=EF=1,BC=6,CA=,若·+·=2,則與的夾角的余弦值等于________. 解析:由題意可得2=(-)2=2+2-2·=33+1-2·=36,∴·=-1. 由·+·=2, 可得·(+)+·(+) =2+·+·

18、+· =1-·+(-1)+· =·(-) =·=2, 故有·=4. 再由·=1×6×cos〈,〉, 可得6×cos〈,〉=4,∴cos〈,〉=. 答案: 5.(2019屆高三·鎮(zhèn)海中學(xué)模擬)已知向量a,b的夾角為,|b|=2,對(duì)任意x∈R,有 |b+xa|≥|a-b|,則|tb-a|+(t∈R)的最小值為_(kāi)_______. 解析:向量a,b夾角為,|b|=2,對(duì)任意x∈R,有|b+xa|≥|a-b|, 兩邊平方整理可得x2a2+2xa·b-(a2-2a·b)≥0, 則Δ=4(a·b)2+4a2(a2-2a·b)≤0, 即有(a2-a·b)2≤0,即為a2=a·b,

19、則(a-b)⊥a, 由向量a,b夾角為,|b|=2, 由a2=a·b=|a|·|b|·cos,得|a|=1, 則|a-b|==, 畫(huà)出=a,=b,建立平面直角坐標(biāo)系,如圖所示: 則A(1,0),B(0,), ∴a=(-1,0),b=(-1,); ∴|tb-a|+ =+ =+ =2 表示P(t,0)與M,N的距離之和的2倍, 當(dāng)M,P,N共線時(shí),取得最小值2|MN|. 即有2|MN|=2=. 答案: 6.已知定點(diǎn)A,B滿足||=2,動(dòng)點(diǎn)P與動(dòng)點(diǎn)M滿足||=4,=λ+(1-λ) (λ∈R),且||=||,則·的取值范圍是________;若動(dòng)點(diǎn)C也滿足||=4,則

20、·的取值范圍是________. 解析:因?yàn)椋溅耍?1-λ) (λ∈R),λ+1-λ=1,所以根據(jù)三點(diǎn)共線知,點(diǎn)M在直線PB上,又||=||,記PA的中點(diǎn)為D,連接MD,如圖,則MD⊥AP,·=·(+)=·+0=2,因?yàn)閨|=4,所以點(diǎn)P在以B為圓心,4為半徑的圓上,則||∈[2,6],則·=2∈[2,18]. 由于|MA|+|MB|=|MP|+|MB|=4,所以點(diǎn)M在以A,B為焦點(diǎn),長(zhǎng)軸的長(zhǎng)為4的橢圓上,以直線AB為x軸,線段AB的垂直平分線為y軸建立平面直角坐標(biāo)系,則橢圓方程為+=1,點(diǎn)C在圓(x-1)2+y2=16上,A(-1,0),設(shè)M(2cos α,sin α),C(4cos β+1,4sin β),則=(4cos β+2,4sin β),=(2cos α+1,sin α), ·=(8cos α+4)cos β+4sin αsin β+4cos α+2 =sin(β+φ)+4cos α+2 =(4cos α+8)sin(β+φ)+4cos α+2, 最大值是(4cos α+8)+4cos α+2=8cos α+10≤18, 最小值是-(4cos α+8)+4cos α+2=-6, 所以·∈[-6,18]. 答案:[2,18] [-6,18]

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!