2022-2023學年高中數(shù)學 第1部分 第3章 空間向量與立體幾何 章末小結(jié) 知識整合與階段檢測(含解析)蘇教版選修2-1

上傳人:xt****7 文檔編號:105639443 上傳時間:2022-06-12 格式:DOC 頁數(shù):11 大?。?22KB
收藏 版權(quán)申訴 舉報 下載
2022-2023學年高中數(shù)學 第1部分 第3章 空間向量與立體幾何 章末小結(jié) 知識整合與階段檢測(含解析)蘇教版選修2-1_第1頁
第1頁 / 共11頁
2022-2023學年高中數(shù)學 第1部分 第3章 空間向量與立體幾何 章末小結(jié) 知識整合與階段檢測(含解析)蘇教版選修2-1_第2頁
第2頁 / 共11頁
2022-2023學年高中數(shù)學 第1部分 第3章 空間向量與立體幾何 章末小結(jié) 知識整合與階段檢測(含解析)蘇教版選修2-1_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022-2023學年高中數(shù)學 第1部分 第3章 空間向量與立體幾何 章末小結(jié) 知識整合與階段檢測(含解析)蘇教版選修2-1》由會員分享,可在線閱讀,更多相關(guān)《2022-2023學年高中數(shù)學 第1部分 第3章 空間向量與立體幾何 章末小結(jié) 知識整合與階段檢測(含解析)蘇教版選修2-1(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022-2023學年高中數(shù)學 第1部分 第3章 空間向量與立體幾何 章末小結(jié) 知識整合與階段檢測(含解析)蘇教版選修2-1 一、空間向量的線性運算 空間向量的線性運算包括加、減及數(shù)乘運算,選定空間不共面的向量作為基向量,并用它們表示出目標向量,這是用向量法解決立體幾何問題的基本要求,解題時,可結(jié)合已知和所求,根據(jù)圖形,利用向量運算法則表示所需向量. 二、空間向量的數(shù)量積 由a·b=|a||b|cos〈a,b〉可知,利用該公式可求夾角、距離.還可由a·b=0來判定垂直問題,要注意數(shù)量積是一個數(shù),其符號由〈a,b〉的大小確定. 三、空間向量與平行和垂直 空間圖形中的平行與垂直問題是立

2、體幾何中最重要的問題之一,主要是運用直線的方向向量和平面的法向量解決. 利用空間向量解決空間中的位置關(guān)系的常用方法有: (1)線線平行. 證明兩條直線平行,只需證明兩條直線的方向向量是共線向量. (2)線線垂直. 證明兩條直線垂直,只需證明兩直線的方向向量垂直,且a⊥b?a·b=0. (3)線面平行. 用向量證明線面平行的方法主要有: ①證明直線的方向向量與平面的法向量垂直; ②證明可在平面內(nèi)找到一個向量與直線的方向向量是共線向量; ③利用共面向量定理,即證明可在平面內(nèi)找到兩不共線向量把直線的方向向量線性表示出來. (4)線面垂直. 用向量證明線面垂直的方法主要有:

3、 ①證明直線的方向向量與平面的法向量平行; ②利用線面垂直的判定定理轉(zhuǎn)化為線線垂直問題. (5)面面平行. ①證明兩個平面的法向量平行(即是共線向量); ②轉(zhuǎn)化為線面平行、線線平行問題. (6)面面垂直. ①證明兩個平面的法向量互相垂直; ②轉(zhuǎn)化為線面垂直、線線垂直問題. 四、空間向量與空間角 利用空間向量求空間角,一般有兩種方法:即幾何法和向量法,利用向量法只需求出直線的方向向量與平面的法向量即可. (1)求兩異面直線所成的角可利用公式cos〈a,b〉=,但務(wù)必注意兩異面直線所成角θ的范圍是,而兩向量之間的夾角的范圍是[0,π]. 故實質(zhì)上應(yīng)有cos θ=|cos〈a,

4、b〉|. (2)求線面角. 求直線與平面所成的角時,一種方法是先求出直線及此直線在平面內(nèi)的射影直線的方向向量,通過數(shù)量積求出直線與平面所成的角;另一種方法是借助平面的法向量,先求出直線的方向向量與平面法向量的夾角φ,即可求出直線與平面所成的角θ,其關(guān)系是sin θ=|cos φ|. (3)求二面角. 基向量法:利用定義在棱上找到兩個能表示二面角的向量,將其用一組基底表示,再做向量運算; 坐標法:建立空間直角坐標系,求得兩個半平面的法向量n1,n2,利用cos〈n1,n2〉=結(jié)合圖形求得.   (時間120分鐘,滿分160分) 一、填空題(本大題共14小題,每小題5分,共70

5、分.將答案填在題中的橫線上) 1.已知a=(-3,2,5),b=(1,x,-1),且a·b=2,則x的值是________. 解析:a·b=-3+2x-5=2,∴x=5. 答案:5 2.設(shè)A、B、C、D是空間不共面的四點,且滿足·=0,·=0,·=0,則△BCD的形狀是________. 解析:△BCD中,·=(-)·(-)=2>0,∴∠B為銳角,同理,∠C,∠D均為銳角, ∴△BCD為銳角三角形. 答案:銳角三角形 3.已知直線l與平面α垂直,直線的一個方向向量為u=(1,3,z),向量v=(3,-2,1)與平面α平行,則z=________. 解析:∵平面α的法向量u=(

6、1,3,z),v與平面α平行,∴u⊥v, ∴u·v=1×3+3×(-2)+z×1=0, ∴z=3. 答案:3 4.已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5).若|a|=,且a分別與,垂直,則向量a為__________. 解析:設(shè)a=(x,y,z),=(-2,-1,3),=(1,-3,2). 則解得a=(1,1,1)或(-1,-1,-1). 答案:(1,1,1)或(-1,-1,-1) 5.已知A(1,5,-2),B(2,4,1),C(x,3,y+2),且A、B、C三點共線,則實數(shù)x,y的值分別為________、________. 解析:若A、B、C

7、三點共線,則,也共線. =(1,-1,3),=(x-2,-1,y+1), ∴=1=.∴x=3,y=2. 答案:3 2 6.已知向量p關(guān)于基底{a,b,c}的坐標為(3,2,-1),則p關(guān)于基底{2a,-b,c}的坐標是________. 解析:由已知得p=3a+2b-c, 則p=(2a)+(-2)(-b)+(-2). 故p關(guān)于基底的坐標為. 答案: 7.已知直線l1,l2的方向向量分別為a,b,且a=(1,2,-2),b=(-2,3,m),若l1⊥l2,則實數(shù)m的值為________. 解析:∵l1⊥l2,∴a⊥b. ∴a·b=1×(-2)+2×3+(-2)×m=4-2m

8、=0. ∴m=2. 答案:2 8.已知a=(cos α,1,sin α),b=(sin α,1,cos α),則向量a+b與a-b的夾角是________. 解析:(a+b)·(a-b)=a2-b2=(cos2α+sin2α+1)-(sin2α+1+cos2α)=0,∴(a+b)⊥(a-b). 答案:90° 9.已知向量a=(cos θ,sin θ,1),b=(,-1,2),則|2a-b|的最大值是________. 解析:因為2a-b=(2cos θ-,2sin θ+1,0), 所以|2a-b|= =≤4. 答案:4 10.平面α的法向量為u=(-1,-2,-1),平面

9、β的法向量為v=(2,4,2),則不重合的平面α與平面β的位置關(guān)系為________. 解析:∵v=-2(-1,-2,-1)=-2u, ∴v∥u,∴α∥β. 答案:平行 11.已知直角△ABC中,∠C=90°,∠B=30°,AB=4,D為AB的中點,沿中線將△ACD折起使得AB= ,則二面角A-CD-B的大小為________. 解析:如圖,取CD中點E,在平面BCD內(nèi)過B點作BF⊥CD,交CD延長線于F. 據(jù)題意知AE⊥CD, AE=BF=,EF=2,AB=. 且〈,〉為二面角的平面角, 由2=(++)2得 13=3+3+4+2×3×cos〈,〉, ∴cos〈,〉=

10、-, ∴〈,〉=120°. 即所求的二面角為120°. 答案:120° 12.如圖,在空間四邊形ABCD中,AC和BD為對角線,G為△ABC的重心,E是BD上一點,BE=3ED,若以{,,}為基底,則=________. 解析:=- =+- =+-(+) =+--- =--+. 答案:--+ 13.正方體ABCD-A1B1C1D1中,BB1與平面ACD1所成角的余弦值為________. 解析:以D為原點,建立空間直角坐標系如圖,設(shè)正方體棱長為1,D(0,0,0),B1(1,1,1),B(1,1,0),則=(0,0,1). ∵B1D⊥平面ACD1, ∴=(1,1,

11、1)為平面ACD1的法向量. 設(shè)BB1與平面ACD1所成的角為θ, 則sin θ===, ∴cos θ=. 答案: 14.已知=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當·取得最小值時,點Q的坐標為________. 解析:∵Q在OP上,∴可設(shè)Q(x,x,2x), 則=(1-x,2-x,3-2x), =(2-x,1-x,2-2x). ∴·=6x2-16x+10, ∴x=時,·最小,這時Q. 答案: 二、解答題(本大題共6小題,共90分.解答應(yīng)寫出文字說明、證明過程或演算步驟) 15.(本小題滿分14分)如圖,已知ABCD-A′B′C

12、′D′是平行六面體. (1)化簡++,并在圖中標出其結(jié)果; (2)設(shè)M是BD的中點,N是側(cè)面BCC′B′對角線BC′上的分點,設(shè)=α+β+γ,試求α、β、γ的值. 解:(1)取DD′的中點G,過點G作DC的平行線GH, 使GH=DC,連接AH, 則=++. 如圖所示. (2)=+ =+ =(-)+(+) =++. ∴α=,β=,γ=. 16.(本小題滿分14分)已知空間三點A(-2,0,2),B(-1,1,2),C(-3,0,4),設(shè)a=,b=. (1)求a和b的夾角θ的余弦值; (2)若向量ka+b與ka-2b互相垂直,求k的值. 解:a==(-1,1,2)

13、-(-2,0,2)=(1,1,0), b==(-3,0,4)-(-2,0,2)=(-1,0,2). (1)cos θ===-, ∴a與b的夾角θ的余弦值為-. (2)ka+b=(k,k,0)+(-1,0,2)=(k-1,k,2), ka-2b=(k,k,0)-(-2,0,4)=(k+2,k,-4), ∴(k-1,k,2)·(k+2,k,-4) =(k-1)(k+2)+k2-8=0. 即2k2+k-10=0, ∴k=-或k=2. 17.(本小題滿分14分)如圖所示,已知直三棱柱(側(cè)棱垂直于底面的三棱柱)ABC-A1B1C1中,AC⊥BC,D是AB的中點,AC=BC=BB1.

14、 (1)求證:BC1⊥AB1; (2)求證:BC1∥平面CA1D. 證明:如圖所示,以C1點為原點,建立空間直角坐標系,設(shè)AC=BC=BB1=2,則A(2,0,2),B(0,2,2),C(0,0,2),A1(2,0,0),B1(0,2,0),C1(0,0,0), D(1,1,2). (1)由于=(0,-2,-2),=(-2,2,-2), ∴·=0-4+4=0, 即⊥,故BC1⊥AB1. (2)取A1C的中點E,連結(jié)DE. 由于E(1,0,1), ∴=(0,1,1),又=(0,-2,-2), ∴=-,且ED與BC1不共線, ∴ED∥BC1,又ED?平面CA1D,BC1?

15、平面CA1D, ∴BC1∥平面CA1D. 18.(本小題滿分16分)正△ABC的邊長為4,CD是AB邊上的高,E,F(xiàn)分別是AC和BC邊的中點,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B. (1)試判斷直線AB與平面DEF的位置關(guān)系,并說明理由; (2)求二面角E-DF-C的余弦值; (3)在線段BC上是否存在一點P,使AP⊥DE?如果存在,求出的值;如果不存在,請說明理由. 解:(1)在△ABC中,由E,F(xiàn)分別是AC,BC中點, 得EF∥AB, 又AB?平面DEF,EF?平面DEF, ∴AB∥平面DEF. (2)以點D為坐標原點,以直線DB、DC、DA分別為x軸、y軸、z

16、軸,建立空間直角坐標系,則A(0,0,2),B(2,0,0),C(0,2,0),E(0,,1),F(xiàn)(1,,0),=(1,,0),=(0,,1),=(0,0,2). 平面CDF的法向量為=(0,0,2), 設(shè)平面EDF的法向量為n=(x,y,z), 則即 取n=(3,-,3), cos〈,n〉==, 所以二面角E-DF-C的余弦值為. (3)存在.設(shè)P(s,t,0),則·=t-2=0, ∴t=, 又=(s-2,t,0),=(-s,2-t,0), ∵∥,∴(s-2)(2-t)=-st, ∴s+t=2. 把t=代入上式得s=,∴=·, ∴在線段BC上存在點P,使AP⊥D

17、E. 此時=. 19.(北京高考)(本小題滿分16分)如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分別為AC、AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2. (1)求證:A1C⊥平面BCDE; (2)若M是A1D的中點,求CM與平面A1BE所成角的大?。? (3)線段BC上是否存在點P,使平面A1DP與平面A1BE垂直?說明理由. 解:(1)證明:因為AC⊥BC,DE∥BC, 所以DE⊥AC. 所以ED⊥A1D,DE⊥CD,所以DE⊥平面A1DC. 所以DE⊥A1C. 又因為A1C⊥CD,且CD∩

18、DE=D, 所以A1C⊥平面BCDE. (2)如圖,以C為坐標原點, CB、CD、CA1為x、y、z軸, 建立空間直角坐標系C-xyz, 則A1(0,0,2),D(0,2,0), M(0,1,),B(3,0,0), E(2,2,0).設(shè)平面A1BE的法向量為n=(x,y,z), 則n·=0,n·=0. 又=(3,0,-2),BE=(-1,2,0), 所以 令y=1,則x=2,z=.所以n=(2,1,). 設(shè)CM與平面A1BE所成的角為θ. 因為=(0,1,) 所以sin θ=|cos〈n,〉| =||==. 所以CM與平面A1BE所成角的大小為. (3)線段

19、BC上不存在點P,使平面A1DP與平面A1BE垂直,理由如下:假設(shè)這樣的點P存在, 設(shè)其坐標為(p,0,0),其中p∈[0,3]. 設(shè)平面A1DP的法向量為m=(x,y,z),則 m·=0,m·=0. 又=(0,2,-2),=(p,-2,0), 所以 令x=2,則y=p,z=.所以m=. 平面A1DP⊥平面A1BE,當且僅當m·n=0, 即4+p+p=0. 解得p=-2,與p∈[0,3]矛盾. 所以線段BC上不存在點P,使平面A1DP與平面A1BE垂直. 20.(山東高考)(本小題滿分16分) 如圖所示,在三棱錐P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E

20、,F(xiàn)分別是AQ,BQ,AP,BP的中點,AQ=2BD,PD與EQ交于點G,PC與FQ交于點H,連接GH. (1)求證:AB∥GH; (2)求二面角D-GH-E的余弦值. 解:(1)證明:因為D,C,E,F(xiàn)分別是AQ,BQ,AP,BP的中點,所以EF∥AB,DC∥AB.所以EF∥DC. 又EF?平面PCD,DC?平面PCD, 所以EF∥平面PCD. 又EF?平面EFQ,平面EFQ∩平面PCD=GH, 所以EF∥GH. 又EF∥AB,所以AB∥GH. (2)在△ABQ中,AQ=2BD,AD=DQ, 所以∠ABQ=90°. 又PB⊥平面ABQ, 所以BA,BQ,BP兩兩垂直.

21、 以B為坐標原點,分別以BA,BQ,BP所在直線為x軸,y軸,z軸,建立如圖所示的空間直角坐標系. 設(shè)BA=BQ=BP=2, 則E(1,0,1),F(xiàn)(0,0,1),Q(0,2,0),D(1,1,0),C(0,1,0),P(0,0,2). 所以=(-1,2,-1),=(0,2,-1), =(-1,-1,2),=(0,-1,2). 設(shè)平面EFQ的一個法向量為m=(x1,y1,z1), 由m·=0,m·=0,得 取y1=1,得m=(0,1,2). 設(shè)平面PDC的一個法向量為n=(x2,y2,z2), 由n·=0,n·=0,得 取z2=1,得n=(0,2,1), 所以cos〈m,n〉==. 因為二面角D-GH-E為鈍角, 所以二面角D-GH-E的余弦值為-.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!