歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2022年高考數(shù)學(xué)二輪專題突破 專題三 數(shù)列與不等式 第4講 不等式與線性規(guī)劃 理

  • 資源ID:105466999       資源大?。?span id="6albdbd" class="font-tahoma">500.02KB        全文頁數(shù):17頁
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。

2022年高考數(shù)學(xué)二輪專題突破 專題三 數(shù)列與不等式 第4講 不等式與線性規(guī)劃 理

2022年高考數(shù)學(xué)二輪專題突破 專題三 數(shù)列與不等式 第4講 不等式與線性規(guī)劃 理1(xx·浙江)已知函數(shù)f(x)x3ax2bxc,且0<f(1)f(2)f(3)3,則()Ac3 B3<c6C6<c9 Dc>92(xx·廣東)若變量x,y滿足約束條件則z3x2y的最小值為()A4 B. C6 D.3(xx·浙江)有三個(gè)房間需要粉刷,粉刷方案要求:每個(gè)房間只用一種顏色,且三個(gè)房間顏色各不相同已知三個(gè)房間的粉刷面積(單位:m2)分別為x,y,z,且xyz,三種顏色涂料的粉刷費(fèi)用(單位:元/m2)分別為a,b,c,且abc.在不同的方案中,最低的總費(fèi)用(單位:元)是()Aaxbycz BazbycxCaybzcx Daybxcz4(xx·重慶)設(shè)a,b0,ab5,則的最大值為_1.利用不等式性質(zhì)比較大小,利用基本不等式求最值及線性規(guī)劃問題是高考的熱點(diǎn);2.一元二次不等式常與函數(shù)、數(shù)列結(jié)合考查一元二次不等式的解法和參數(shù)取值范圍;3.利用不等式解決實(shí)際問題.熱點(diǎn)一不等式的解法1一元二次不等式的解法先化為一般形式ax2bxc>0(a0),再求相應(yīng)一元二次方程ax2bxc0(a0)的根,最后根據(jù)相應(yīng)二次函數(shù)圖象與x軸的位置關(guān)系,確定一元二次不等式的解集2簡(jiǎn)單分式不等式的解法(1)>0(<0)f(x)g(x)>0(<0);(2)0(0)f(x)g(x)0(0)且g(x)0.3指數(shù)不等式、對(duì)數(shù)不等式及抽象函數(shù)不等式,可利用函數(shù)的單調(diào)性求解例1(1)已知一元二次不等式f(x)<0的解集為,則f(10x)>0的解集為()Ax|x<1或x>lg 2Bx|1<x<lg 2Cx|x>lg 2Dx|x<lg 2(2)已知函數(shù)f(x)(x2)(axb)為偶函數(shù),且在(0,)單調(diào)遞增,則f(2x)>0的解集為()Ax|x>2或x<2 Bx|2<x<2Cx|x<0或x>4 Dx|0<x<4思維升華(1)對(duì)于和函數(shù)有關(guān)的不等式,可先利用函數(shù)的單調(diào)性進(jìn)行轉(zhuǎn)化;(2)求解一元二次不等式的步驟:第一步,二次項(xiàng)系數(shù)化為正數(shù);第二步,解對(duì)應(yīng)的一元二次方程;第三步,若有兩個(gè)不相等的實(shí)根,則利用“大于在兩邊,小于夾中間”得不等式的解集;(3)含參數(shù)的不等式的求解,要對(duì)參數(shù)進(jìn)行分類討論跟蹤演練1(1)關(guān)于x的不等式x22ax8a2<0(a>0)的解集為(x1,x2),且x2x115,則a_.(2)已知f(x)是R上的減函數(shù),A(3,1),B(0,1)是其圖象上兩點(diǎn),則不等式|f(1ln x)|<1的解集是_熱點(diǎn)二基本不等式的應(yīng)用利用基本不等式求最大值、最小值,其基本法則是:(1)如果x>0,y>0,xyp(定值),當(dāng)xy時(shí),xy有最小值2(簡(jiǎn)記為:積定,和有最小值);(2)如果x>0,y>0,xys(定值),當(dāng)xy時(shí),xy有最大值s2(簡(jiǎn)記為:和定,積有最大值)例2(1)已知向量a(3,2),b(x,y1),且ab,若x,y均為正數(shù),則的最小值是()A. B.C8 D24(2)已知關(guān)于x的不等式2x7在x(a,)上恒成立,則實(shí)數(shù)a的最小值為()A1 B.C2 D.思維升華在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號(hào)取得的條件)的條件才能應(yīng)用,否則會(huì)出現(xiàn)錯(cuò)誤跟蹤演練2(1)(xx·天津)已知a0,b0,ab8,則當(dāng)a的值為_時(shí),log2a·log2(2b)取得最大值(2)若直線2axby20(a>0,b>0)被圓x2y22x4y10截得的弦長為4,則的最小值是_熱點(diǎn)三簡(jiǎn)單的線性規(guī)劃問題解決線性規(guī)劃問題首先要找到可行域,再注意目標(biāo)函數(shù)表示的幾何意義,數(shù)形結(jié)合找到目標(biāo)函數(shù)達(dá)到最值時(shí)可行域的頂點(diǎn)(或邊界上的點(diǎn)),但要注意作圖一定要準(zhǔn)確,整點(diǎn)問題要驗(yàn)證解決例3(1)(xx·北京)若x,y滿足則zx2y的最大值為()A0 B1C. D2(2)(xx·安徽)x,y滿足約束條件若zyax取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)a的值為()A.或1 B2或C2或1 D2或1思維升華(1)線性規(guī)劃問題一般有三種題型:一是求最值;二是求區(qū)域面積;三是確定目標(biāo)函數(shù)中的字母系數(shù)的取值范圍(2)一般情況下,目標(biāo)函數(shù)的最大或最小值會(huì)在可行域的端點(diǎn)或邊界上取得跟蹤訓(xùn)練3已知x,y滿足且目標(biāo)函數(shù)z2xy的最小值為9,則實(shí)數(shù)a的值是()A1 B2C3 D71若點(diǎn)A(a,b)在第一象限,且在直線x2y1上,則ab的最大值為()A1 B. C. D.2已知A(1,1),B(x,y),且實(shí)數(shù)x,y滿足不等式組則z·的最小值為()A2 B2C4 D63已知函數(shù)f(x)則不等式f(x)4的解集為_4已知不等式|a2a|對(duì)于x2,6恒成立,則a的取值范圍是_提醒:完成作業(yè)專題三第4講二輪專題強(qiáng)化練專題三第4講 不等式與線性規(guī)劃A組專題通關(guān)1下列選項(xiàng)中正確的是()A若a>b,則ac2>bc2B若ab>0,a>b,則<C若a>b,c<d,則<D若a>b,c>d,則ac>bd2不等式x2x<對(duì)任意a,b(0,)恒成立,則實(shí)數(shù)x的取值范圍是()A(2,0) B(,2)(1,)C(2,1) D(,4)(2,)3(xx·山東)已知x,y滿足約束條件若zaxy的最大值為4,則a等于() A3 B2 C2 D34(xx·重慶)若log4(3a4b)log2,則ab的最小值是()A62 B72C64 D745(xx·浙江杭州二中第一次月考)若關(guān)于x的不等式x2ax2>0在區(qū)間1,5上有解,則實(shí)數(shù)a的取值范圍為()A(,) B,1C(1,) D(,1)6已知函數(shù)f(x)那么不等式f(x)1的解集為_7(xx·綿陽市一診)某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該產(chǎn)品生產(chǎn)總成本C與產(chǎn)量q(qN*)的函數(shù)關(guān)系式為C1004q,銷售單價(jià)p與產(chǎn)量q的函數(shù)關(guān)系式為p25q.要使每件產(chǎn)品的平均利潤最大,則產(chǎn)量q_.8已知正實(shí)數(shù)a,b滿足a2b1,則a24b2的最小值為_9設(shè)集合A為函數(shù)yln(x22x8)的定義域,集合B為函數(shù)yx的值域,集合C為不等式(ax)(x4)0的解集(1)求AB;(2)若CRA,求a的取值范圍10運(yùn)貨卡車以每小時(shí)x千米的速度勻速行駛130千米(按交通法規(guī)限制50x100)(單位:千米/小時(shí))假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油(2)升,司機(jī)的工資是每小時(shí)14元(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;(2)當(dāng)x為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值B組能力提高11(xx·陜西)設(shè)f(x)ln x,0ab,若pf(),qf,r(f(a)f(b),則下列關(guān)系式中正確的是()Aqrp BqrpCprq Dprq12(xx·課標(biāo)全國)若x,y滿足約束條件則的最大值為_13(xx·浙江)若實(shí)數(shù)x,y滿足x2y21,則|2xy2|6x3y|的最小值是_14圖(1)是某斜拉式大橋圖片,為了了解橋的一些結(jié)構(gòu)情況,學(xué)校數(shù)學(xué)興趣小組將大橋的結(jié)構(gòu)進(jìn)行了簡(jiǎn)化,取其部分可抽象成如圖(2)所示的模型,其中橋塔AB,CD與橋面AC垂直,通過測(cè)量得知AB50 cm,AC50 cm,當(dāng)P為AC中點(diǎn)時(shí),BPD45°.(1)求CD的長;(2)試問點(diǎn)P在線段AC的何處時(shí),BPD達(dá)到最大?學(xué)生用書答案精析第4講不等式與線性規(guī)劃高考真題體驗(yàn)1C由題意得化簡(jiǎn)得解得所以f(1)c6,所以0<c63,解得6<c9,故選C.2B不等式組所表示的可行域如下圖所示,由z3x2y得yx,依題當(dāng)目標(biāo)函數(shù)直線l:yx經(jīng)過A時(shí),z取得最小值即zmin3×12×,故選B.3B令x1,y2,z3,a1,b2,c3.A項(xiàng):axbycz14914;B項(xiàng):azbycx34310;C項(xiàng):aybzcx26311;D項(xiàng):aybxcz22913.故選B.43解析a,b0,ab5,()2ab42ab4()2()2ab4ab418,當(dāng)且僅當(dāng)a,b時(shí),等號(hào)成立,則3,即最大值為3.熱點(diǎn)分類突破例1(1)D(2)C解析(1)由已知條件0<10x<,解得x<lglg 2.(2)由題意可知f(x)f(x)即(x2)(axb)(x2)(axb),(2ab)x0恒成立,故2ab0,即b2a,則f(x)a(x2)·(x2)又函數(shù)在(0,)單調(diào)遞增,所以a>0.f(2x)>0即ax(x4)>0,解得x<0或x>4.故選C.跟蹤演練1(1)(2)(,e2)解析(1)由x22ax8a2<0,得(x2a)·(x4a)<0,因?yàn)閍>0,所以不等式的解集為(2a,4a),即x24a,x12a,由x2x115,得4a(2a)15,解得a.(2)|f(1ln x)|<1,1<f(1ln x)<1,f(3)<f(1ln x)<f(0),又f(x)在R上為減函數(shù),0<1ln x<3,1<ln x<2,<x<e2.例2(1)C(2)B解析(1)ab,3(y1)2x0,即2x3y3.x>0,y>0,()·(2x3y)(66)(122×6)8.當(dāng)且僅當(dāng)3y2x時(shí)取等號(hào)(2)2x2(xa)2a2·2a42a,由題意可知42a7,得a,即實(shí)數(shù)a的最小值為,故選B.跟蹤演練2(1)4(2)4解析(1)log2a·log2(2b)log2a·(1log2b)2224,當(dāng)且僅當(dāng)log2a1log2b,即a2b時(shí),等號(hào)成立,此時(shí)a4,b2.(2)易知圓x2y22x4y10的半徑為2,圓心為(1,2),因?yàn)橹本€2axby20(a>0,b>0)被圓x2y22x4y10截得的弦長為4,所以直線2axby20(a>0,b>0)過圓心,把圓心坐標(biāo)代入得:ab1,所以()(ab)24,當(dāng)且僅當(dāng),ab1,即ab時(shí)等號(hào)成立例3(1)D(2)D解析(1)可行域如圖所示目標(biāo)函數(shù)化為yxz,當(dāng)直線yxz過點(diǎn)A(0,1)時(shí),z取得最大值2.(2)如圖,由yaxz知z的幾何意義是直線在y軸上的截距,故當(dāng)a>0時(shí),要使zyax取得最大值的最優(yōu)解不唯一,則a2;當(dāng)a<0時(shí),要使zyax取得最大值的最優(yōu)解不唯一,則a1.跟蹤訓(xùn)練3C依題意,不等式組所表示的可行域如圖所示(陰影部分),觀察圖象可知,當(dāng)目標(biāo)函數(shù)z2xy過點(diǎn)B(a,a)時(shí),zmin2aa3a;因?yàn)槟繕?biāo)函數(shù)z2xy的最小值為9,所以3a9,解得a3,故選C.高考押題精練1D因?yàn)辄c(diǎn)A(a,b)在第一象限,且在直線x2y1上,所以a>0,b>0,且a2b1,所以ab·a·2b·()2,當(dāng)且僅當(dāng)a2b,即a,b時(shí),“”成立故選D.2C畫出不等式組所表示的可行域?yàn)槿鐖D所示的ECD的內(nèi)部(包括邊界),其中E(2,6),C(2,0),D(0,2)目標(biāo)函數(shù)z·xy.令直線l:yxz,要使直線l過可行域上的點(diǎn)且在y軸上的截距z取得最大值,只需直線l過點(diǎn)E(2,6)此時(shí)z取得最小值,且最小值z(mì)min264.故選C.3x|14x<2或x解析由題意得或解得x或14x<2,故不等式f(x)4的解集為x|14x<2或x41,2解析設(shè)y,因?yàn)閥在x2,6上單調(diào)遞減,即ymin,故不等式|a2a|對(duì)于x2,6恒成立等價(jià)于|a2a|恒成立,化簡(jiǎn)得解得1a2,故a的取值范圍是1,2二輪專題強(qiáng)化練答案精析第4講不等式與線性規(guī)劃1B若a>b,取c0,則ac2>bc2不成立,排除A;取a2,b1,c1,d2,則選項(xiàng)C不成立,排除C;取a2,b1,c1,d1,則選項(xiàng)D不成立,排除D.選B.2C根據(jù)題意,由于不等式x2x<對(duì)任意a,b(0,)恒成立,則x2x<()min,22,x2x<2,求解此一元二次不等式可知其解集為(2,1)3B不等式組表示的平面區(qū)域如圖陰影部分所示易知A(2,0),由得B(1,1)由zaxy,得yaxz.當(dāng)a2或a3時(shí),zaxy在O(0,0)處取得最大值,最大值為zmax0,不滿足題意,排除C,D選項(xiàng);當(dāng)a2或3時(shí),zaxy在A(2,0)處取得最大值,2a4,a2,排除A,故選B.4D由題意得所以又log4(3a4b)log2,所以log4(3a4b)log4ab,所以3a4bab,故1.所以ab(ab)()77274,當(dāng)且僅當(dāng)時(shí)取等號(hào)故選D.5A方法一令f(x)x2ax2,則f(0)2.若0,即a0時(shí),要使關(guān)于x的不等式x2ax2>0在區(qū)間1,5上有解,則應(yīng)滿足f(5)>0,解得a>.所以a0;若>0即a<0時(shí),要使關(guān)于x的不等式x2ax2>0在區(qū)間1,5上有解,也應(yīng)滿足f(5)>0,解得a>.所以<a<0.綜上可知,實(shí)數(shù)a的取值范圍是(,)方法二不等式x2ax2>0在1,5上有解可轉(zhuǎn)化為a>x在1,5上有解,設(shè)f(x)x,x1,5,易知f(x)為減函數(shù),f(x)minf(5),a>f(x)min,故a的取值范圍是(,)6(,03,)解析當(dāng)x>0時(shí),由log3x1可得x3,當(dāng)x0時(shí),由()x1可得x0,不等式f(x)1的解集為(,03,)740解析每件產(chǎn)品的利潤y25q29()29224,當(dāng)且僅當(dāng)且q>0,即q40時(shí)取等號(hào)8.解析方法一a24b28.當(dāng)且僅當(dāng)a2b時(shí)等號(hào)成立方法二因?yàn)?a2b2ab,當(dāng)且僅當(dāng)a2b時(shí)取等號(hào)又因?yàn)閍24b22a·(2b)4ab.令tab,所以f(t)4t在(0,上單調(diào)遞減,所以f(t)minf().此時(shí)a2b.9解(1)由x22x8>0得4<x<2,即A(4,2)yx(x1)1,當(dāng)x1>0,即x>1時(shí)y211,此時(shí)x0,符合要求;當(dāng)x1<0,即x<1時(shí),y213,此時(shí)x2,符合要求所以B(,31,),所以AB(4,31,2)(2)RAx|x4或x2(ax)(x4)0有兩根x4或x.當(dāng)a>0時(shí),Cx|4x,不可能CRA;當(dāng)a<0時(shí),Cx|x4或x,若CRA,則2,a2,a<0.故a的取值范圍為,0)10解(1)行車所用時(shí)間為t(h),y×2×(2)14×,x50,100所以,這次行車總費(fèi)用y關(guān)于x的表達(dá)式是yx,x50,100(2)yx26,當(dāng)且僅當(dāng)x,即x18時(shí),上述不等式中等號(hào)成立故當(dāng)x18時(shí),這次行車的總費(fèi)用最低,最低費(fèi)用為26元11C0ab,又f(x)ln x在(0,)上為增函數(shù),故ff(),即qp.又r(f(a)f(b)(ln aln b)ln aln bln(ab)f()p.故prq.選C.123解析畫出可行域如圖陰影所示,表示過點(diǎn)(x,y)與原點(diǎn)(0,0)的直線的斜率,點(diǎn)(x,y)在點(diǎn)A處時(shí)最大由得A(1,3)的最大值為3.133解析滿足x2y21的實(shí)數(shù)x,y表示的點(diǎn)(x,y)構(gòu)成的區(qū)域是單位圓及其內(nèi)部f(x,y)|2xy2|6x3y|2xy2|6x3y直線y2x2與圓x2y21交于A,B兩點(diǎn),如圖所示,易得B.設(shè)z14x2y,z283x4y,分別作直線yx和yx并平移,則z14x2y在點(diǎn)B取得最小值為3,z283x4y在點(diǎn)B取得最小值為3,所以|2xy2|6x3y|的最小值是3.14解(1)設(shè)BPA,DPC,CDh cm,則tan 2,tan ,由題意得,tan()1,解得h75.故CD的長為75 cm.(2)設(shè)APx cm(0<x<50),則tan ,tan ,tanBPDtan().x250x50×75>0,tanBPD>0,即BPD為銳角令tx100100,150,則xt100,tanBPD,tanBPD,當(dāng)且僅當(dāng)t,即t25100,150時(shí)等號(hào)成立,AP(25100)cm時(shí),BPD最大

注意事項(xiàng)

本文(2022年高考數(shù)學(xué)二輪專題突破 專題三 數(shù)列與不等式 第4講 不等式與線性規(guī)劃 理)為本站會(huì)員(xt****7)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!