2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第十一章 第7講 離散型隨機(jī)變量的均值與方差 理 新人教A版

上傳人:xt****7 文檔編號:105270595 上傳時間:2022-06-11 格式:DOC 頁數(shù):7 大小:64.52KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第十一章 第7講 離散型隨機(jī)變量的均值與方差 理 新人教A版_第1頁
第1頁 / 共7頁
2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第十一章 第7講 離散型隨機(jī)變量的均值與方差 理 新人教A版_第2頁
第2頁 / 共7頁
2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第十一章 第7講 離散型隨機(jī)變量的均值與方差 理 新人教A版_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第十一章 第7講 離散型隨機(jī)變量的均值與方差 理 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第十一章 第7講 離散型隨機(jī)變量的均值與方差 理 新人教A版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第十一章 第7講 離散型隨機(jī)變量的均值與方差 理 新人教A版 一、選擇題 1.某班有的學(xué)生數(shù)學(xué)成績優(yōu)秀,如果從班中隨機(jī)地找出5名同學(xué),那么其中數(shù)學(xué)成績優(yōu)秀的學(xué)生數(shù)X~B,則E(2X+1)等于(  ) A. B. C.3 D. 解析 因為X~B,所以E(X)=,所以E(2X+1)=2E(X)+1=2×+1 =. 答案 D 2.某種種子每粒發(fā)芽的概率都為0.9,現(xiàn)播種了1 000粒,對于沒有發(fā)芽的種

2、子,每粒需要再補(bǔ)種2粒,補(bǔ)種的種子數(shù)記為X,則X的數(shù)學(xué)期望為(  ). A.100 B.200 C.300 D.400 解析 種子發(fā)芽率為0.9,不發(fā)芽率為0.1,每粒種子發(fā)芽與否相互獨(dú)立,故設(shè)沒有發(fā)芽的種子數(shù)為ξ,則ξ~B(1 000,0.1),∴E(ξ)=1 000×0.1=100,故需補(bǔ)種的期望為E(X)=2·E(ξ)=200. 答案 B 3.若p為非負(fù)實(shí)數(shù),隨機(jī)變量ξ的分布列為 ξ 0 1 2 P -p p A.1 B. C. D.2 解析 由p≥0,-p≥0,則0≤p≤

3、,E(ξ)=p+1≤. 答案 B 4.已知隨機(jī)變量X+η=8,若X~B(10,0.6),則E(η),D(η)分別是 (  ). A.6和2.4 B.2和2.4 C.2和5.6 D.6和5.6 解析 由已知隨機(jī)變量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,D(η)=(-1)2D(X)=10×0.6×0.4=2.4. 答案 B 5.一個籃球運(yùn)動員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c(a、b、c∈(0,1)),已知他投籃一次得分的均值為2,則+的最小值為 (  ). A

4、. B. C. D. 解析 由已知得,3a+2b+0×c=2, 即3a+2b=2,其中0D(ξ2) B.D(ξ1)=D(ξ2) C.D(ξ1)

5、2) D.D(ξ1)與D(ξ2)的大小關(guān)系與x1、x2、x3、x4的取值有關(guān) 解析 利用期望與方差公式直接計算. E(ξ1)=0.2x1+0.2x2+0.2x3+0.2x4+0.2x5 =0.2(x1+x2+x3+x4+x5). E(ξ2)=0.2×+0.2×+…+0.2× =0.2(x1+x2+x3+x4+x5). ∴E(ξ1)=E(ξ2),記作, ∴D(ξ1)=0.2[(x1-)2+(x2-)2+…+(x5-)2] =0.2[x+x+…+x+52-2(x1+x2+…+x5)] =0.2(x+x+…+x-52). 同理D(ξ2)=0.22+2+…+2-5 2. ∵2<

6、,…,2<, ∴2+2+…+2D(ξ2). 答案 A 二、填空題 7.某射手射擊所得環(huán)數(shù)ξ的分布列如下: ξ 7 8 9 10 P x 0.1 0.3 y 已知ξ的期望E(ξ)=8.9,則y的值為________. 解析 x+0.1+0.3+y=1,即x+y=0.6. ① 又7x+0.8+2.7+10y=8.9,化簡得7x+10y=5.4. ② 由①②聯(lián)立解得x=0.2,y=0.4. 答案 0.4 8.馬老師從課本上抄錄一個隨機(jī)變量ξ的概率分布列如下表: ξ 1 2 3 P ?

7、! ? 請小牛同學(xué)計算ξ的數(shù)學(xué)期望.盡管“!”處完全無法看清,且兩個“?”處字跡模糊,但能斷定這兩個“?”處的數(shù)值相同.據(jù)此,小牛給出了正確答案E(ξ)=________. 解析 令“?”為a,“!”為b,則2a+b=1.又E(ξ)=a+2b+3a=2(2a+b)=2. 答案 2 9.袋中有大小、形狀相同的紅、黑球各一個,每次摸取一個球記下顏色后放回,現(xiàn)連續(xù)取球8次,記取出紅球的次數(shù)為X,則X的方差D(X)=________. 解析 每次取球時,紅球被取出的概率為,8次取球看做8次獨(dú)立重復(fù)試驗,紅球出現(xiàn)的次數(shù)X~B,故D(X)=8××=2. 答案 2 10.罐中有6個紅球,4

8、個白球,從中任取1球,記住顏色后再放回,連續(xù)摸取4次,設(shè)ξ為取得紅球的次數(shù),則ξ的期望E(ξ)=________. 解析 因為是有放回地摸球,所以每次摸球(試驗)摸得紅球(成功)的概率均為,連續(xù)摸4次(做4次試驗),ξ為取得紅球(成功)的次數(shù),則ξ~B, 從而有E(ξ)=np=4×=. 答案  三、解答題 11.袋中有20個大小相同的球,其中記上0號的有10個,記上n號的有n個(n=1,2,3,4).現(xiàn)從袋中任取一球,X表示所取球的標(biāo)號. (1)求X的分布列、期望和方差; (2)若η=aX+b,E(η)=1,D(η)=11,試求a,b的值. 解 (1)X的分布列為 X 0

9、 1 2 3 4 P ∴E(X)=0×+1×+2×+3×+4×=1.5. D(X)=(0-1.5)2×+(1-1.5)2×+(2-1.5)2×+(3-1.5)2×+(4-1.5)2×=2.75. (2)由D(η)=a2D(X),得a2×2.75=11,即a=±2. 又E(η)=aE(X)+b, 所以當(dāng)a=2時,由1=2×1.5+b,得b=-2. 當(dāng)a=-2時,由1=-2×1.5+b,得b=4. ∴或即為所求. 12.甲、乙、丙三名射擊運(yùn)動員射中目標(biāo)的概率分別為,a,a(0

10、望; (2)在概率P(ξ=i)(i=0,1,2,3)中,若P(ξ=1)的值最大,求實(shí)數(shù)a的取值范圍. 解 (1)P(ξ)是“ξ個人命中,3-ξ個人未命中”的概率.其中ξ的可能取值為0,1,2,3. P(ξ=0)=(1-a)2=(1-a)2, P(ξ=1)=(1-a)2+a(1-a)+(1-a)a=(1-a2), P(ξ=2)=a2+(1-a)a+a(1-a)=(2a-a2), P(ξ=3)=. 所以ξ的分布列為 ξ 0 1 2 3 P (1-a)2 (1-a2) (2a-a2) ξ的數(shù)學(xué)期望為 E(ξ)=0×(1-a)2+1×(1-a)2+2×(2a-a

11、2)+3×=. (2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a), P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=, P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=. 由及0

12、 0.4 0.1 現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于趕往火車站. (1)為了盡最大可能在各自允許的時間內(nèi)趕到火車站,甲和乙應(yīng)如何選擇各自的路徑? (2)用X表示甲、乙兩人中在允許的時間內(nèi)能趕到火車站的人數(shù),針對(1)的選擇方案,求X的分布列和數(shù)學(xué)期望. 解 (1)Ai表示事件“甲選擇路徑Li時,40分鐘內(nèi)趕到火車站”,Bi表示事件“乙選擇路徑Li時,50分鐘內(nèi)趕到火車站”,i=1,2. 用頻率估計相應(yīng)的概率可得 P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5, ∵P(A1)>P(A2),∴甲應(yīng)選擇L1; P(B1)=0.1+0.2+

13、0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9, ∵P(B2)>P(B1),∴乙應(yīng)選擇L2. (2)A,B分別表示針對(1)的選擇方案,甲、乙在各自允許的時間內(nèi)趕到火車站, 由(1)知P(A)=0.6,P(B)=0.9,又由題意知,A,B獨(dú)立, ∴P(X=0)=P()=P()P()=0.4×0.1=0.04, P(X=1)=P(B+A)=P()P(B)+P(A)P() =0.4×0.9+0.6×0.1=0.42, P(X=2)=P(AB)=P(A)P(B)=0.6×0.9=0.54. ∴X的分布列為 X 0 1 2 P 0.04 0.42 0

14、.54 ∴E(X)=0×0.04+1×0.42+2×0.54=1.5. 14.某城市有甲、乙、丙3個旅游景點(diǎn),一位游客游覽這3個景點(diǎn)的概率分別是0.4、0.5、0.6,且游客是否游覽哪個景點(diǎn)互不影響,用X表示該游客離開該城市時游覽的景點(diǎn)數(shù)與沒有游覽的景點(diǎn)數(shù)之差的絕對值. (1)求X的分布列及期望; (2)記“f(x)=2Xx+4在[-3,-1]上存在x0,使f(x0)=0”為事件A,求事件A的概率. 解 (1)設(shè)游客游覽甲、乙、丙景點(diǎn)分別記為事件A1、A2、A3,已知A1、A2、 A3相互獨(dú)立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6.游客游覽的景點(diǎn)數(shù)可能

15、 取值為0、1、2、3,相應(yīng)的游客沒有游覽的景點(diǎn)數(shù)可能取值為3、2、1、0, 所以X的可能取值為1、3.則P(X=3)=P(A1A2A3)+P(  ) =P(A1)·P(A2)·P(A3)+P()·P()·P() =2×0.4×0.5×0.6=0.24. P(X=1)=1-0.24=0.76. 所以分布列為: X 1 3 P 0.76 0.24 ∴E(X)=1×0.76+3×0.24=1.48. (2)∵f(x)=2Xx+4在[-3,-1]上存在x0,使得f(x0)=0, ∴f(-3)·f(-1)≤0,即(-6X+4)(-2X+4)≤0, 解得:≤X≤2. ∴P(A)=P=P(X=1)=0.76.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!