《2022年高三數(shù)學(xué) 立體幾何與空間向量教案》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué) 立體幾何與空間向量教案(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
2022年高三數(shù)學(xué) 立體幾何與空間向量教案
1 空間直角坐標(biāo)系:(1)若空間的一個(gè)基底的三個(gè)基向量互相垂直,且長(zhǎng)為,這個(gè)基底叫單位正交基底,用表示;(2)在空間選定一點(diǎn)和一個(gè)單位正交基底,以點(diǎn)為原點(diǎn),分別以的方向?yàn)檎较蚪⑷龡l數(shù)軸:軸、軸、軸,它們都叫坐標(biāo)軸.我們稱建立了一個(gè)空間直角坐標(biāo)系,點(diǎn)叫原點(diǎn),向量 都叫坐標(biāo)向量.通過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫坐標(biāo)平面,分別稱為平面,平面,平面;
2.空間直角坐標(biāo)系中的坐標(biāo): 在空間直角坐標(biāo)系中,對(duì)空間任一點(diǎn),存在唯一的有序?qū)崝?shù)組,使,有序?qū)崝?shù)組叫作向量在空間直角坐標(biāo)系中的坐標(biāo),記作,叫橫坐標(biāo),叫縱坐標(biāo),叫豎坐標(biāo).
3.空間向量的直角坐標(biāo)運(yùn)算律:(
2、1)若,,
則,,,
, ,
.
(2)若,,則.
一個(gè)向量在直角坐標(biāo)系中的坐標(biāo)等于表示這個(gè)向量的有向線段的終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo)
4 模長(zhǎng)公式:若, 則.
5.夾角公式:.
6.兩點(diǎn)間的距離公式:若,,則
7.直線和平面所成角:(1)定義:平面的一條斜線和它在平面上的射影所成的銳角叫做這條斜線和這個(gè)平面所成的角 一直線垂直于平面,所成的角是直角一直線平行于平面或在平面內(nèi),所成角為0°角直線和平面所成角范圍: [0,]
(2)定理:斜線和平面所成角是這條斜線和平面內(nèi)經(jīng)過(guò)斜足的直線所成的一切角中最小的角
8.公式:已知平面a的斜線a與a內(nèi)一直線b相交成θ角,且a與a相交
3、成j1角,a在a上的射影c與b相交成j2角,則有
9 二面角的概念:平面內(nèi)的一條直線把平面分為兩個(gè)部分,其中的每一部分叫做半平面;從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,每個(gè)半平面叫做二面角的面若棱為,兩個(gè)面分別為的二面角記為
10.二面角的平面角:(1)過(guò)二面角的棱上的一點(diǎn)分別在兩個(gè)半平面內(nèi)作棱的兩條垂線,則叫做二面角的平面角(2)一個(gè)平面垂直于二面角的棱,且與兩半平面交線分別為為垂足,則也是的平面角(1)二面角的平面角范圍是;(2)二面角的平面角為直角時(shí),則稱為直二面角,組成直二面角的兩個(gè)平面互相垂直
11 兩個(gè)平面垂直的定義:兩個(gè)相交成直二面角的兩
4、個(gè)平面互相垂直;相交成直二面角的兩個(gè)平面叫做互相垂直的平面
12.面面垂直的判定定理: 如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直
13.面面垂直的性質(zhì)定理: 若兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于它們的交線的直線垂直于另一個(gè)平面
練習(xí):
1設(shè),,且,記,求與軸正方向的夾角的余弦值
2. 在ΔABC中,已知AB=(2,4,0),BC=(-1,3,0),則∠ABC=___
3.已知空間三點(diǎn)A(0,2,3),B(-2,1,6),C(1,-1,5),
⑴求以向量為一組鄰邊的平行四邊形的面積S;
⑵若向量分別與向量垂直,且||=,求向量的坐標(biāo)
4.直角的斜邊在
5、平面內(nèi),與所成角分別為,是斜邊上的高線,求與平面所成角的正弦值
5.如果二面角的平面角是銳角,點(diǎn)到的距離分別為,求二面角的大小
6.如圖,正方體的棱長(zhǎng)為1,,求:(1)與所成角;
(2)與平面所成角的正切值;(3)平面與平面所成角
7已知正方體的棱長(zhǎng)為,是的中點(diǎn),是對(duì)角線的中點(diǎn),
(1)求證:是異面直線和的公垂線;(2)求異面直線和的距離
參考答案:
1設(shè),,且,記,
求與軸正方向的夾角的余弦值
解:取軸正方向的任一向量,設(shè)所求夾角為,
∵
∴,即為所求
2. 在ΔABC中,已知AB=(2,4,0),BC=(-1,3,0),則∠ABC=___
解:
6、
∴∠ABC=45°
3.已知空間三點(diǎn)A(0,2,3),B(-2,1,6),C(1,-1,5)
⑴求以向量為一組鄰邊的平行四邊形的面積S;
⑵若向量分別與向量垂直,且||=,求向量的坐標(biāo)
分析:⑴
∴∠BAC=60°,
⑵設(shè)=(x,y,z),則
解得x=y(tǒng)=z=1或x=y(tǒng)=z=-1,∴=(1,1,1)或=(-1,-1,-1).
4.直角的斜邊在平面內(nèi),與所成角分別為,是斜邊上的高線,求與平面所成角的正弦值
解:過(guò)點(diǎn)作于點(diǎn),連接,
則,,為所求與所成角,記為,
令,則,
則在中,有
在中,
∴與平面所成角的正弦值
7、.
5.如果二面角的平面角是銳角,點(diǎn)到的距離分別為,求二面角的大小
分析:點(diǎn)可能在二面角內(nèi)部,也可能在外部,應(yīng)區(qū)別處理
解:如圖1是點(diǎn)在二面角的內(nèi)部時(shí),圖2是點(diǎn)在二面角外部時(shí),
∵ ∴
∵ ∴面
同理,面
而面面
∴面與面應(yīng)重合
即在同一平面內(nèi),
則是二面角的平面角
在中, ∴
在中, ∴
故(圖1)或(圖2)
即二面角的大小為或
說(shuō)明:作一個(gè)垂直于棱的平面,此平面與兩個(gè)半平面的交線所成的角就是二面角的平面角
6.如圖,正方體的棱長(zhǎng)為1,,求:
(1)與所成角;
(2)與平面所成角的正切值;
(3)平面與平面所成角
解:(1)∵ ∴與所成角
8、就是
∵平面 ∴(三垂線定理)
在中, ∴
(2)作,平面平面
∴平面,為與平面所成角
在中, ∴
(3)∵ ∴平面
又∵平面 ∴平面平面
即平面與平面所成角為
7已知正方體的棱長(zhǎng)為,是的中點(diǎn),是對(duì)角線的中點(diǎn),
(1)求證:是異面直線和的公垂線;(2)求異面直線和的距離
解:(1)解法一:延長(zhǎng)交于,則為的中點(diǎn),∴,
∵,
∴,連結(jié),則,
又是的中點(diǎn),∴,
∴是異面直線和的公垂線
(2)由(1)知,.
解法二:建立空間直角坐標(biāo)系,用坐標(biāo)運(yùn)算證明(略)
引申:求與間的距離
解法一:(轉(zhuǎn)化為到過(guò)且與平行的平面的距離)
連結(jié),則//,∴//平面,連,可證得
,,∴平面,
∴平面平面,且兩平面的交線為,過(guò)作,垂足為,則即為與平面的距離,也即與間的距離,
在中,,∴.
(解法二):坐標(biāo)法:
以為原點(diǎn),所在的直線分別為軸,軸、軸建立空間直角坐標(biāo)系,
則,,
由(解法一)求點(diǎn)到平面的距離,設(shè),
∵在平面上,
∴,即,
∴,
∵,∴,
解得:,∴,∴.
解法三:直接求與間的距離
設(shè)與的公垂線為,且,
設(shè),設(shè),
則,∴,∴,
同理,
∴,∴,
∴,
解得:,,.