2018高中數(shù)學(xué) 初高中銜接讀本 專題4.1 簡單的二次方程組的解法精講深剖學(xué)案

上傳人:彩*** 文檔編號:104763783 上傳時間:2022-06-11 格式:DOC 頁數(shù):5 大小:144KB
收藏 版權(quán)申訴 舉報 下載
2018高中數(shù)學(xué) 初高中銜接讀本 專題4.1 簡單的二次方程組的解法精講深剖學(xué)案_第1頁
第1頁 / 共5頁
2018高中數(shù)學(xué) 初高中銜接讀本 專題4.1 簡單的二次方程組的解法精講深剖學(xué)案_第2頁
第2頁 / 共5頁
2018高中數(shù)學(xué) 初高中銜接讀本 專題4.1 簡單的二次方程組的解法精講深剖學(xué)案_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018高中數(shù)學(xué) 初高中銜接讀本 專題4.1 簡單的二次方程組的解法精講深剖學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《2018高中數(shù)學(xué) 初高中銜接讀本 專題4.1 簡單的二次方程組的解法精講深剖學(xué)案(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第1講 簡單的二次方程組的解法 本專題在初中學(xué)習(xí)方程、不等和函數(shù)的基礎(chǔ)上,根據(jù)高中學(xué)習(xí)的需要,共同學(xué)習(xí)簡單的二次方程組及一元二次不等式的解法。 探究一 簡單的二次方程組的解法 在初中我們已經(jīng)學(xué)習(xí)了一元一次方程、一元二次方程及二元一次方程組的解法,掌握了用消元法解二元一次方程組.高中學(xué)習(xí)圓錐曲線時,需要用到二元二次方程組的解法.因此,本講講介紹簡單的二元二次方程組的解法. 【知識梳理】 1.含有兩個未知數(shù)、且含有未知數(shù)的項的最高次數(shù)是2的整式方程,叫做二元二次方程. 2.由一個二元一次方程和一個二元二次方程組成的方程組,或由兩個二元二次方程組組成的方程組,

2、叫做二元二次方程組。 3.解二元二次方程組的基本思想是“轉(zhuǎn)化”,這種轉(zhuǎn)化包含“消元”和 “降次”將二元轉(zhuǎn)化為一元是消元,將二次轉(zhuǎn)化為一次是降次,這是轉(zhuǎn)化的基本方法。因此,掌握好消元和降次的一些方法和技巧是解二元二次方程組的關(guān)鍵。 探究1: 由一個二元一次方程和一個二元二次方程組成的方程組 一個二元一次方程和一個二元二次方程組成的方程組一般都可以用代入法求解.其蘊含著轉(zhuǎn)化思想:將二元一次方程化歸為熟悉的一元二次方程求解. 【典例解析】解方程組 【分析】由于方程(1)是二元一次方程,故可由方程(1),得,代入方程(2)消去. 【解析】 由(1)

3、變形得: (3) 將(3)代入(2)得:,解得: 把代入(3)得:;把代入(3)得:. ∴原方程組的解是:. 【解題反思】 (1) 解由一個二元一次方程和一個二元二次方程組成的方程組的步驟: ①由二元一次方程變形為用表示的方程,或用表示的方程(3); ②把方程(3)代入二元二次方程,得一個一元二次方程; ③解消元后得到的一元二次方程; ④把一元二次方程的根,代入變形后的二元一次方程(3),求相應(yīng)的未知數(shù)的值; ⑤寫出答案. (2) 消,還是消,應(yīng)由二元一次方程的系數(shù)來決定.若系數(shù)均為整數(shù),那么最好消去系數(shù)絕對值較小的,如方程,可以消去,變形得,再代入消元. (3) 消

4、元后,求出一元二次方程的根,應(yīng)代入二元一次方程求另一未知數(shù)的值,不能代入二元二次方程求另一未知數(shù)的值,因為這樣可能產(chǎn)生增根,這一點切記. 【變式訓(xùn)練】解方程組 【分析】本題可以用代入消元法解方程組,但注意到方程組的特點,可以把、看成是方程 的兩根,則更容易求解. 【點評】(1) 對于這種對稱性的方程組,利用一元二次方程的根與系數(shù)的關(guān)系構(gòu)造方程時,未知數(shù)要換成異于、的字母,如. (2) 對稱形方程組的解也應(yīng)是對稱的,即有解,則必有解. 探究2:由兩個二元二次方程組成的方程組 (1)可因式分解型的方程組 方程組中的一個方程可以因式分解化為兩個二元一次方程,則原方程組可轉(zhuǎn)化為兩個

5、方程組,其中每個方程組都是由一個二元二次方程和一個二元一次方程組成. 【典例解析】解方程組 【分析】注意到方程,可分解成,即得或,則可得到兩個二元二次方程組,且每個方程組中均有一個方程為二元一次方程. 【解題反思】由兩個二元二次方程組成的方程組中,有一個方程可以通過因式分解,化為兩個二元一次方程,則原方程組轉(zhuǎn)化為解兩個方程組,其中每一個方程組均有一個方程是二元一次方程. 【變式訓(xùn)練】解方程組 【分析】本題的特點是方程組中的兩個方程均缺一次項,我們可以消去常數(shù)項,可得到一個二次三項式的方程.對其因式分解,就可以轉(zhuǎn)化為上例. 【解析】(1) –(2)得: 即 ∴ ∴ 原方

6、程組可化為兩個二元一次方程組:. 用代入法解這兩個方程組,得原方程組的解是:. 【點評】若方程組的兩個方程均缺一次項,則消去常數(shù)項,得到一個二元二次方程.此方程與原方程組中的任一個方程聯(lián)立,得到一個可因式分解型的二元二次方程組. (2)可消二次項型的方程組 【典例解析】解方程組 【分析】注意到兩個方程都有項,所以可用加減法消之,得到一個二元一次方程,即轉(zhuǎn)化為由一個二元一次方程和一個二元二次方程組成的方程組. 【解題反思】若方程組的兩個方程的二次項系數(shù)對應(yīng)成比例,則可用加減法消去二次項,得到一個二元一次方程,把它與原方程組的任意一個方程聯(lián)立,解此方程組,即得原方程組的解.二元二次

7、方程組類型多樣,消元與降次是兩種基本方法,具體問題具體解決。 【變式訓(xùn)練】1.解二元二次方程組. 【分析】,②﹣①×2可得:y=2﹣3x, 代入①化為:11x2﹣46x+8=0,解得x,進(jìn)而解得y. 【解答】, ②﹣①×2可得:y=2﹣3x, 代入①化為:11x2﹣46x+8=0, 解得x=,x=4. ∴,或. ∴原方程組的解為:,或. 【點評】觀察方程組通過加減消元法,消去二次項,得到二元一次方程,代入可解,先降次再消元。 2.解二元二次方程組. 【分析】,①﹣②×2可得:x2﹣x=0,解得x,進(jìn)而解得y. 【解答】解:, ①﹣②×2可得:x2﹣x=0,解得x=0或1. ∴,,,. ∴原方程組的解為:,,,. 【點評】觀察方程組通過加減消元法,消去二次項,進(jìn)而求解??疾榱送评砟芰εc計算能力。 5

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!