《2018高中數(shù)學(xué) 初高中銜接讀本 專題2.2 根與系數(shù)的關(guān)系韋達(dá)定理)高效演練學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018高中數(shù)學(xué) 初高中銜接讀本 專題2.2 根與系數(shù)的關(guān)系韋達(dá)定理)高效演練學(xué)案(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第2講 根與系數(shù)的關(guān)系(韋達(dá)定理)
現(xiàn)行初中數(shù)學(xué)教材主要要求學(xué)生掌握一元二次方程的概念、解法及應(yīng)用,而一元二次方程的根的判斷式及根與系數(shù)的關(guān)系,在高中教材中的二次函數(shù)、不等式及解析幾何等章節(jié)有著重要應(yīng)用.本專題將對(duì)一元二次方程根的判別式、根與系數(shù)的關(guān)系等進(jìn)行講述。
【知識(shí)梳理】
一元二次方程的根與系數(shù)的關(guān)系(韋達(dá)定理)
一元二次方程的兩個(gè)根為:
所以:,
定理:如果一元二次方程的兩個(gè)根為,那么:
說(shuō)明:一元二次方程根與系數(shù)的關(guān)系由十六世紀(jì)的法國(guó)數(shù)學(xué)家韋達(dá)發(fā)現(xiàn),所以通常把此定理稱為”韋達(dá)定理”.上述定理成立的前提是.
【高效演練】
1.若 是一
2、元二次方程 的兩個(gè)根,則的值是( )
A.2 B.-2 C.4 D.-3
【解析】:方程的兩根為,,根據(jù)題意得.故選D.
【答案】D.
2.若α,β是方程x2﹣2x﹣3=0的兩個(gè)實(shí)數(shù)根,則α2+β2的值為( ?。?
A. 5 B. 7 C. 9 D. 10
【解析】∵α,β是方程x2﹣2x﹣3=0的兩個(gè)實(shí)數(shù)根,∴α+β=2,αβ=﹣3,
∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣3)=10.故選D.
【答案】D
3.關(guān)于x的一元二次方程x2+px+q=0的
3、兩根同為負(fù)數(shù),則( )
A. p>0且q>0 B. p>0且q<0
C. p<0且q>0 D. p<0且q<0
【解析】試題解析:設(shè)x1,x2是該方程的兩個(gè)負(fù)數(shù)根,則有x1+x2<0,x1x2>0,
∵x1+x2=-p,x1x2=q
∴-p<0,q>0
∴p>0,q>0.故選A.
【答案】A
4.方程x2-(m+6)x+m2=0有兩個(gè)相等的實(shí)數(shù)根,且滿足x1+x2=x1x2,則m的值是( )
A. -2或3 B. 3
4、C. -2 D. -3或2
5.規(guī)定:如果關(guān)于x的一元二次方程(a≠0)有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根是另一個(gè)根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論:
①方程是倍根方程;
②若關(guān)于x的方程是倍根方程,則a=±3;
③若關(guān)于x的方程(a≠0)是倍根方程,則拋物線與x軸的公共點(diǎn)的坐標(biāo)是(2,0)和(4,0);
④若點(diǎn)(m,n)在反比例函數(shù)的圖象上,則關(guān)于x的方程是倍根方程.
上述結(jié)論中正確的有( )
A.①② B.③④ C.②③ D.②④
【解析】
③關(guān)于x的方程(a≠0)是倍根方程,∴x2=2x1,∵
5、拋物線的對(duì)稱軸是直線x=3,∴拋物線與x軸的交點(diǎn)的坐標(biāo)是(2,0)和(4,0),故③正確;
④∵點(diǎn)(m,n)在反比例函數(shù)的圖象上,∴mn=4,解得x1=﹣,x2=﹣,∴x2=4x1,∴關(guān)于x的方程不是倍根方程;故選C.
【答案】C.
6.已知關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根分別為,則=__________.
【解析】∵關(guān)于的方程: 的兩個(gè)實(shí)數(shù)根分別為,
∴,
∴.
【答案】-3
7.若方程的兩實(shí)根為a、b,則的值為_(kāi)______。
【解析】∵方程x2–x–1=0的兩實(shí)根為a、b,
∴a+b=1,ab=–1,
∴.
【答案】-1
8.設(shè)是方程的兩個(gè)實(shí)數(shù)根,則的值為_(kāi)___
6、___。
【解析】由是方程的兩個(gè)實(shí)數(shù)根,
則且,
又
【答案】2017
9.關(guān)于x的一元二次方程的兩實(shí)數(shù)根之積為負(fù),則實(shí)數(shù)m的取值范圍
是 .
10.一元二次方程有兩個(gè)實(shí)根,一個(gè)比3大,一個(gè)比3小,的取值范圍為_(kāi)______。
【解析】解一:由 解得:
解二:設(shè),則如圖所示,只須,解得
【答案】
11.若關(guān)于x的一元二次方程x2–4x+k–3=0的兩個(gè)實(shí)數(shù)根為x1、x2,且滿足x1=3x2,試求出方程的兩個(gè)實(shí)數(shù)根及k的值.
【解析】由根與系數(shù)的關(guān)系,得
x1+x2=4①,x1x2=k–3②
又∵x1=3x2③,
聯(lián)立①、③
7、,解方程組得,
∴k=x1x2+3=3×1+3=6
則方程兩根為x1=3,x2=1;k=6.
【答案】x1=3,x2=1;k=6.
12.已知關(guān)于的方程
(1)若這個(gè)方程有實(shí)數(shù)根,求實(shí)數(shù)k的取值范圍;
(2)若方程兩實(shí)數(shù)根分別為x1、x2,且滿足,求實(shí)數(shù)k的值.
【解析】分析:(1)根據(jù)方程有實(shí)根可得△≥0,進(jìn)而可得[-2(k-3)]2-4×1×(k2-4k-1)≥0,再解即可;
(2)根據(jù)根與系數(shù)的關(guān)系可得x1+x2=2(k-3),x1?x2=k2-4k-1,再由完全平方公式可得x12+x22=(x1+x2)2-2x1x2,代入x1+x2=2(k-3),x1?x2= k2-4
8、k-1可計(jì)算出m的值.
解析:(1)∵x2-2(k-3)x+k2-4k-1=0有實(shí)數(shù)根,
∴△=4(k-3)2-4(k2-4k-1)=4k2-24k+36-4k2+16k+4=40-8k≥0,
解得:k≤5;
13.已知關(guān)于的方程,根據(jù)下列條件,分別求出的值.
(1) 方程兩實(shí)根的積為5;
(2) 方程的兩實(shí)根滿足.
【解析】(1) ∵方程兩實(shí)根的積為5
∴
所以,當(dāng)時(shí),方程兩實(shí)根的積為5.
(2) 由得知:
①當(dāng)時(shí),,所以方程有兩相等實(shí)數(shù)根,故;
②當(dāng)時(shí),,由于
,故不合題意,舍去.
綜上可得,時(shí),方程的兩實(shí)根滿足.
【答案】(1);(2).
14.已知
9、關(guān)于x的一元二次方程 ,其中k為常數(shù).
(1)求證:無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)已知函數(shù)的圖象不經(jīng)過(guò)第三象限,求k的取值范圍;
(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.
解析:(1)證明:∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,∴無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)解:∵二次函數(shù)的圖象不經(jīng)過(guò)第三象限,∵二次項(xiàng)系數(shù)a=1,∴拋物線開(kāi)口方向向上,∵△=(k﹣3)2+12>0,∴拋物線與x軸有兩個(gè)交點(diǎn),設(shè)拋物線與x軸的交點(diǎn)的橫坐標(biāo)分別為x1,x2,∴x1+x2=5﹣k>0,x1x2=1﹣k≥0,
10、解得k≤1,即k的取值范圍是k≤1;
(3)解:設(shè)方程的兩個(gè)根分別是x1,x2,根據(jù)題意,得(x1﹣3)(x2﹣3)<0,即x1x2﹣3(x1+x2)+9<0,又x1+x2=5﹣k,x1x2=1﹣k,代入得,1﹣k﹣3(5﹣k)+9<0,解得k<.則k的最大整數(shù)值為2.
【答案】(1)證明見(jiàn)解析;(2)k≤1;(3)2.
【解題反思】:本題考查了拋物線與x軸的交點(diǎn),二次函數(shù)的圖象和性質(zhì),二次函數(shù)與一元二次方程的關(guān)系,根的判別式,根與系數(shù)的關(guān)系,綜合性較強(qiáng)。
15.已知是一元二次方程的兩個(gè)實(shí)數(shù)根.
(1) 是否存在實(shí)數(shù),使成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
(2) 求使的值為整數(shù)的實(shí)數(shù)的整數(shù)值.
【解析】(1) 假設(shè)存在實(shí)數(shù),使成立.∵ 一元二次方程的兩個(gè)實(shí)數(shù)根,∴ ,又是一元二次方程的兩個(gè)實(shí)數(shù)根,∴
∴ ,但.
∴不存在實(shí)數(shù),使成立.
7