2018高中數(shù)學(xué) 初高中銜接讀本 專題2.2 根與系數(shù)的關(guān)系韋達定理)高效演練學(xué)案

上傳人:彩*** 文檔編號:104727341 上傳時間:2022-06-11 格式:DOC 頁數(shù):7 大?。?47.50KB
收藏 版權(quán)申訴 舉報 下載
2018高中數(shù)學(xué) 初高中銜接讀本 專題2.2 根與系數(shù)的關(guān)系韋達定理)高效演練學(xué)案_第1頁
第1頁 / 共7頁
2018高中數(shù)學(xué) 初高中銜接讀本 專題2.2 根與系數(shù)的關(guān)系韋達定理)高效演練學(xué)案_第2頁
第2頁 / 共7頁
2018高中數(shù)學(xué) 初高中銜接讀本 專題2.2 根與系數(shù)的關(guān)系韋達定理)高效演練學(xué)案_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018高中數(shù)學(xué) 初高中銜接讀本 專題2.2 根與系數(shù)的關(guān)系韋達定理)高效演練學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《2018高中數(shù)學(xué) 初高中銜接讀本 專題2.2 根與系數(shù)的關(guān)系韋達定理)高效演練學(xué)案(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第2講 根與系數(shù)的關(guān)系(韋達定理) 現(xiàn)行初中數(shù)學(xué)教材主要要求學(xué)生掌握一元二次方程的概念、解法及應(yīng)用,而一元二次方程的根的判斷式及根與系數(shù)的關(guān)系,在高中教材中的二次函數(shù)、不等式及解析幾何等章節(jié)有著重要應(yīng)用.本專題將對一元二次方程根的判別式、根與系數(shù)的關(guān)系等進行講述。 【知識梳理】 一元二次方程的根與系數(shù)的關(guān)系(韋達定理) 一元二次方程的兩個根為: 所以:, 定理:如果一元二次方程的兩個根為,那么: 說明:一元二次方程根與系數(shù)的關(guān)系由十六世紀的法國數(shù)學(xué)家韋達發(fā)現(xiàn),所以通常把此定理稱為”韋達定理”.上述定理成立的前提是. 【高效演練】 1.若 是一

2、元二次方程 的兩個根,則的值是(  ) A.2 B.-2 C.4 D.-3 【解析】:方程的兩根為,,根據(jù)題意得.故選D. 【答案】D. 2.若α,β是方程x2﹣2x﹣3=0的兩個實數(shù)根,則α2+β2的值為(  ) A. 5 B. 7 C. 9 D. 10 【解析】∵α,β是方程x2﹣2x﹣3=0的兩個實數(shù)根,∴α+β=2,αβ=﹣3, ∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣3)=10.故選D. 【答案】D 3.關(guān)于x的一元二次方程x2+px+q=0的

3、兩根同為負數(shù),則(  ) A. p>0且q>0 B. p>0且q<0 C. p<0且q>0 D. p<0且q<0 【解析】試題解析:設(shè)x1,x2是該方程的兩個負數(shù)根,則有x1+x2<0,x1x2>0, ∵x1+x2=-p,x1x2=q ∴-p<0,q>0 ∴p>0,q>0.故選A. 【答案】A 4.方程x2-(m+6)x+m2=0有兩個相等的實數(shù)根,且滿足x1+x2=x1x2,則m的值是(  ) A. -2或3 B. 3

4、C. -2 D. -3或2 5.規(guī)定:如果關(guān)于x的一元二次方程(a≠0)有兩個實數(shù)根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論: ①方程是倍根方程; ②若關(guān)于x的方程是倍根方程,則a=±3; ③若關(guān)于x的方程(a≠0)是倍根方程,則拋物線與x軸的公共點的坐標(biāo)是(2,0)和(4,0); ④若點(m,n)在反比例函數(shù)的圖象上,則關(guān)于x的方程是倍根方程. 上述結(jié)論中正確的有( ?。? A.①②      B.③④      C.②③      D.②④ 【解析】 ③關(guān)于x的方程(a≠0)是倍根方程,∴x2=2x1,∵

5、拋物線的對稱軸是直線x=3,∴拋物線與x軸的交點的坐標(biāo)是(2,0)和(4,0),故③正確; ④∵點(m,n)在反比例函數(shù)的圖象上,∴mn=4,解得x1=﹣,x2=﹣,∴x2=4x1,∴關(guān)于x的方程不是倍根方程;故選C. 【答案】C. 6.已知關(guān)于的一元二次方程的兩個實數(shù)根分別為,則=__________. 【解析】∵關(guān)于的方程: 的兩個實數(shù)根分別為, ∴, ∴. 【答案】-3 7.若方程的兩實根為a、b,則的值為_______。 【解析】∵方程x2–x–1=0的兩實根為a、b, ∴a+b=1,ab=–1, ∴. 【答案】-1 8.設(shè)是方程的兩個實數(shù)根,則的值為____

6、___。 【解析】由是方程的兩個實數(shù)根, 則且, 又 【答案】2017 9.關(guān)于x的一元二次方程的兩實數(shù)根之積為負,則實數(shù)m的取值范圍 是 . 10.一元二次方程有兩個實根,一個比3大,一個比3小,的取值范圍為_______。 【解析】解一:由 解得: 解二:設(shè),則如圖所示,只須,解得 【答案】 11.若關(guān)于x的一元二次方程x2–4x+k–3=0的兩個實數(shù)根為x1、x2,且滿足x1=3x2,試求出方程的兩個實數(shù)根及k的值. 【解析】由根與系數(shù)的關(guān)系,得 x1+x2=4①,x1x2=k–3② 又∵x1=3x2③, 聯(lián)立①、③

7、,解方程組得, ∴k=x1x2+3=3×1+3=6 則方程兩根為x1=3,x2=1;k=6. 【答案】x1=3,x2=1;k=6. 12.已知關(guān)于的方程 (1)若這個方程有實數(shù)根,求實數(shù)k的取值范圍; (2)若方程兩實數(shù)根分別為x1、x2,且滿足,求實數(shù)k的值. 【解析】分析:(1)根據(jù)方程有實根可得△≥0,進而可得[-2(k-3)]2-4×1×(k2-4k-1)≥0,再解即可; (2)根據(jù)根與系數(shù)的關(guān)系可得x1+x2=2(k-3),x1?x2=k2-4k-1,再由完全平方公式可得x12+x22=(x1+x2)2-2x1x2,代入x1+x2=2(k-3),x1?x2= k2-4

8、k-1可計算出m的值. 解析:(1)∵x2-2(k-3)x+k2-4k-1=0有實數(shù)根, ∴△=4(k-3)2-4(k2-4k-1)=4k2-24k+36-4k2+16k+4=40-8k≥0, 解得:k≤5; 13.已知關(guān)于的方程,根據(jù)下列條件,分別求出的值. (1) 方程兩實根的積為5; (2) 方程的兩實根滿足. 【解析】(1) ∵方程兩實根的積為5 ∴ 所以,當(dāng)時,方程兩實根的積為5. (2) 由得知: ①當(dāng)時,,所以方程有兩相等實數(shù)根,故; ②當(dāng)時,,由于 ,故不合題意,舍去. 綜上可得,時,方程的兩實根滿足. 【答案】(1);(2). 14.已知

9、關(guān)于x的一元二次方程 ,其中k為常數(shù). (1)求證:無論k為何值,方程總有兩個不相等實數(shù)根; (2)已知函數(shù)的圖象不經(jīng)過第三象限,求k的取值范圍; (3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值. 解析:(1)證明:∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,∴無論k為何值,方程總有兩個不相等實數(shù)根; (2)解:∵二次函數(shù)的圖象不經(jīng)過第三象限,∵二次項系數(shù)a=1,∴拋物線開口方向向上,∵△=(k﹣3)2+12>0,∴拋物線與x軸有兩個交點,設(shè)拋物線與x軸的交點的橫坐標(biāo)分別為x1,x2,∴x1+x2=5﹣k>0,x1x2=1﹣k≥0,

10、解得k≤1,即k的取值范圍是k≤1; (3)解:設(shè)方程的兩個根分別是x1,x2,根據(jù)題意,得(x1﹣3)(x2﹣3)<0,即x1x2﹣3(x1+x2)+9<0,又x1+x2=5﹣k,x1x2=1﹣k,代入得,1﹣k﹣3(5﹣k)+9<0,解得k<.則k的最大整數(shù)值為2. 【答案】(1)證明見解析;(2)k≤1;(3)2. 【解題反思】:本題考查了拋物線與x軸的交點,二次函數(shù)的圖象和性質(zhì),二次函數(shù)與一元二次方程的關(guān)系,根的判別式,根與系數(shù)的關(guān)系,綜合性較強。 15.已知是一元二次方程的兩個實數(shù)根. (1) 是否存在實數(shù),使成立?若存在,求出的值;若不存在,請說明理由. (2) 求使的值為整數(shù)的實數(shù)的整數(shù)值. 【解析】(1) 假設(shè)存在實數(shù),使成立.∵ 一元二次方程的兩個實數(shù)根,∴ ,又是一元二次方程的兩個實數(shù)根,∴ ∴ ,但. ∴不存在實數(shù),使成立. 7

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!