初二數(shù)學(xué)上冊第二章實(shí)數(shù)
第二章:實(shí)數(shù) 本章的知識網(wǎng)絡(luò)結(jié)構(gòu):知識梳理一數(shù)的開方主要知識點(diǎn):【1】平方根:如果一個數(shù)x的平方等于a,那么,這個數(shù)x就叫做a的平方根;也即,當(dāng)時,我們稱x是a的平方根,記做:。因此:4. 當(dāng)a=0時,它的平方根只有一個,也就是0本身;5. 當(dāng)a0時,也就是a為正數(shù)時,它有兩個平方根,且它們是互為相反數(shù),通常記做:。6. 當(dāng)a0時,也即a為負(fù)數(shù)時,它不存在平方根。例1.(1) 的平方是64,所以64的平方根是 ;(2) 的平方根是它本身。(3)若的平方根是2,則x= ;的平方根是 (4)當(dāng)x 時,有意義。(5)一個正數(shù)的平方根分別是m和m-4,則m的值是多少?這個正數(shù)是多少?【算術(shù)平方根】: (1)如果一個正數(shù)x的平方等于a,即,那么,這個正數(shù)x就叫做a的算術(shù)平方根,記為:“”,讀作,“根號a”,其中,a稱為被開方數(shù)。特別規(guī)定:0的算術(shù)平方根仍然為0。(2)算術(shù)平方根的性質(zhì):具有雙重非負(fù)性,即:。(3)算術(shù)平方根與平方根的關(guān)系:算術(shù)平方根是平方根中正的一個值,它與它的相反數(shù)共同構(gòu)成了平方根。因此,算術(shù)平方根只有一個值,并且是非負(fù)數(shù),它只表示為:;而平方根具有兩個互為相反數(shù)的值,表示為:。例2.(1)下列說法正確的是 ( )A1的立方根是; B;(C)、的平方根是; ( D)、0沒有平方根; (2)下列各式正確的是( )A、 B、 C、 D、(3)的算術(shù)平方根是 。(4)若有意義,則_。(5)已知ABC的三邊分別是且滿足,求c的取值范圍。(6)已知:A=是的算術(shù)平方根,B=是的立方根。求AB的平方根。(7)(提高題)如果x、y分別是4的整數(shù)部分和小數(shù)部分。求x y的值.【立方根】 (1)如果x的立方等于a,那么,就稱x是a的立方根,或者三次方根。記做:,讀作,3次根號a。注意:這里的3表示的是開根的次數(shù)。一般的,平方根可以省寫根的次數(shù),但是,當(dāng)根的次數(shù)在兩次以上的時候,則不能省略。(2)平方根與立方根:每個數(shù)都有立方根,并且一個數(shù)只有一個立方根;但是,并不是每個數(shù)都有平方根,只有非負(fù)數(shù)才能有平方根。例3.(1)64的立方根是(2)若,則b等于( ) A. 1000000 B. 1000 C. 10 D. 10000(3)下列說法中:都是27的立方根,的立方根是2,。其中正確的有 ( )A、1個 B、2個 C、3個 D、4個【無理數(shù)】 (1)無限不循環(huán)小數(shù)的小數(shù)叫做無理數(shù);它必須滿足“無限”以及“不循環(huán)”這兩個條件。在初中階段,無理數(shù)的表現(xiàn)形式主要包含下列幾種:(1)特殊意義的數(shù),如:圓周率以及含有的一些數(shù),如:2-,3等;(2)開方開不盡的數(shù),如:等;(3)特殊結(jié)構(gòu)的數(shù):如:2.010 010 001 000 01(兩個1之間依次多1個0)等。應(yīng)當(dāng)要注意的是:帶根號的數(shù)不一定是無理數(shù),如:等;無理數(shù)也不一定帶根號,如:(2) 有理數(shù)與無理數(shù)的區(qū)別:(1)有理數(shù)指的是有限小數(shù)和無限循環(huán)小數(shù),而無理數(shù)則是無限不循環(huán)小數(shù);(2)所有的有理數(shù)都能寫成分?jǐn)?shù)的形式(整數(shù)可以看成是分母為1的分?jǐn)?shù)),而無理數(shù)則不能寫成分?jǐn)?shù)形式。例4.(1)下列各數(shù):3.141、0.33333、0.3030003000003(相鄰兩個3之間0的個數(shù)逐次增加2)、其中是有理數(shù)的有;是無理數(shù)的有。(填序號)(2)有五個數(shù):0.125125,0.1010010001,-,其中無理數(shù)有 ( )個A 2 B 3 C 4 D 5 【實(shí)數(shù)】(1)有理數(shù)與無理數(shù)統(tǒng)稱為實(shí)數(shù)。在實(shí)數(shù)中,沒有最大的實(shí)數(shù),也沒有最小的實(shí)數(shù);絕對值最小的實(shí)數(shù)是0,最大的負(fù)整數(shù)是-1。(2)實(shí)數(shù)的性質(zhì):實(shí)數(shù)a的相反數(shù)是-a;實(shí)數(shù)a的倒數(shù)是(a0);實(shí)數(shù)a的絕對值|a|=,它的幾何意義是:在數(shù)軸上的點(diǎn)到原點(diǎn)的距離。(3)實(shí)數(shù)的大小比較法則:實(shí)數(shù)的大小比較的法則跟有理數(shù)的大小比較法則相同:即正數(shù)大于0,0大于負(fù)數(shù);正數(shù)大于負(fù)數(shù);兩個正數(shù),絕對值大的就大,兩個負(fù)數(shù),絕對值大的反而小。(在數(shù)軸上,右邊的數(shù)總是大于左邊的數(shù))。對于一些帶根號的無理數(shù),我們可以通過比較它們的平方或者立方的大小。(4)實(shí)數(shù)的運(yùn)算:在實(shí)數(shù)范圍內(nèi),可以進(jìn)行加、減、乘、除、乘方、開方六種運(yùn)算。運(yùn)算法則和運(yùn)算順序與有理數(shù)的一致。例5.(1)下列說法正確的是( );A、任何有理數(shù)均可用分?jǐn)?shù)形式表示 ; B、數(shù)軸上的點(diǎn)與有理數(shù)一一對應(yīng) ;C、1和2之間的無理數(shù)只有 ; D、不帶根號的數(shù)都是有理數(shù)。(2)a,b在數(shù)軸上的位置如圖所示,則下列各式有意義的是( )b0aA、 B、 C、 D、(3)比較大小(填“>”或“<”).3 , , , ,(4)數(shù) 的大小關(guān)系是 ( ) A. B. C. D. (5)將下列各數(shù):,用“”連接起來;_。(6)若,且,則:= 。(7)計(jì)算: (8)已知:,求代數(shù)式的值。6.(提高題)觀察下列等式:回答問題: ,(1)根據(jù)上面三個等式的信息,請猜想的結(jié)果;(2)請按照上式反應(yīng)的規(guī)律,試寫出用n表示的等式,并加以驗(yàn)證。課后練習(xí)重點(diǎn)考查題型:一、考查題型:1 1的相反數(shù)的倒數(shù)是2 已知a+3|+0,則實(shí)數(shù)(a+b)的相反數(shù)3 數(shù)314與的大小關(guān)系是4 和數(shù)軸上的點(diǎn)成一一對應(yīng)關(guān)系的是5 和數(shù)軸上表示數(shù)3的點(diǎn)A距離等于25的B所表示的數(shù)是6 在實(shí)數(shù)中,0, ,314, 無理數(shù)有()(A)1個(B)2個(C)3個(D)4個7一個數(shù)的絕對值等于這個數(shù)的相反數(shù),這樣的數(shù)是()(A)非負(fù)數(shù)(B)非正數(shù)(C)負(fù)數(shù)(D)正數(shù)8若x3,則x3等于()(A)x3(B)x3(C)x3(D)x39下列說法正確是()a) 有理數(shù)都是實(shí)數(shù) (B)實(shí)數(shù)都是有理數(shù)b) 帶根號的數(shù)都是無理數(shù)(D)無理數(shù)都是開方開不盡的數(shù)10實(shí)數(shù)在數(shù)軸上的對應(yīng)點(diǎn)的位置如圖,比較下列每組數(shù)的大小:(1) c-b和d-a (2) bc和ad 二、考點(diǎn)訓(xùn)練:*1判斷題:(1)如果a為實(shí)數(shù),那么a一定是負(fù)數(shù);()(2)對于任何實(shí)數(shù)a與b,|ab|=|ba|恒成立;()(3)兩個無理數(shù)之和一定是無理數(shù);()(4)兩個無理數(shù)之積不一定是無理數(shù);()(5)任何有理數(shù)都有倒數(shù);()(6)最小的負(fù)數(shù)是1;()(7)a的相反數(shù)的絕對值是它本身;()(8)若|a|=2,|b|=3且ab>0,則ab=1;()2把下列各數(shù)分別填入相應(yīng)的集合里|3|,213,1234,,0,, , ()0,32,ctg45,1.2121121112中 無理數(shù)集合 負(fù)分?jǐn)?shù)集合 整數(shù)集合 非負(fù)數(shù)集合 *3已知1<x<2,則|x3|+等于()(A)2x(B)2(C)2x(D)24下列各數(shù)中,哪些互為相反數(shù)?哪些互為倒數(shù)?哪些互為負(fù)倒數(shù)?3, 1, 3, 03, 31, 1 +, 3互為相反數(shù): 互為倒數(shù): 互為負(fù)倒數(shù): *5已知、是實(shí)數(shù),且(X)2和2互為相反數(shù),求,y的值6.,b互為相反數(shù),c,d互為倒數(shù),m的絕對值是2,求+4m-3cd= 。*7已知0,求= 。三、解題指導(dǎo):1下列語句正確的是()(A)無盡小數(shù)都是無理數(shù)(B)無理數(shù)都是無盡小數(shù)(C)帶拫號的數(shù)都是無理數(shù)(D)不帶拫號的數(shù)一定不是無理數(shù)。2和數(shù)軸上的點(diǎn)一一對應(yīng)的數(shù)是()(A)整數(shù) (B)有理數(shù) (C)無理數(shù)(D)實(shí)數(shù)3零是()1 最小的有理數(shù) (B)絕對值最小的實(shí)數(shù)(C)最小的自然數(shù) (D)最小的整數(shù)4.如果a是實(shí)數(shù),下列四種說法:(1)2和都是正數(shù),(2),那么一定是負(fù)數(shù),(3)的倒數(shù)是,(4)和的兩個分別在原點(diǎn)的兩側(cè),幾個是正確的()(A)0(B)1(C)2(D)3*5比較下列各組數(shù)的大小:9) (2) (3)a<b<0時, 6若a,b滿足=0,則的值是 *7實(shí)數(shù)a,b,c在數(shù)軸上的對應(yīng)點(diǎn)如圖,其中O是原點(diǎn),且|a|=|c|(1) 判定a+b,a+c,c-b的符號(2) 化簡|a|-|a+b|+|a+c|+|c-b|*8數(shù)軸上點(diǎn)A表示數(shù)1,若AB3,則點(diǎn)B所表示的數(shù)為 9已知x<0,y>0,且y<|x|,用"<"連結(jié)x,x,|y|,y。10最大負(fù)整數(shù)、最小的正整數(shù)、最小的自然數(shù)、絕對值最小的實(shí)數(shù)各是什么?11絕對值、相反數(shù)、倒數(shù)、平方數(shù)、算術(shù)平方根、立方根是它本身的數(shù)各是什么?12把下列語句譯成式子:(1)a是負(fù)數(shù) ;(2)a、b兩數(shù)異號 ;(3)a、b互為相反數(shù);(4)a、b互為倒數(shù);(5)x與y的平方和是非負(fù)數(shù);(6)c、d兩數(shù)中至少有一個為零 ;(7)a、b兩數(shù)均不為0。*13.數(shù)軸上作出表示,的點(diǎn)。四獨(dú)立訓(xùn)練:10的相反數(shù)是,3的相反數(shù)是, 的相反數(shù)是;的絕對值是,0的絕對值是,的倒數(shù)是2數(shù)軸上表示32的點(diǎn)它離開原點(diǎn)的距離是。A表示的數(shù)是,且AB,則點(diǎn)B表示的數(shù)是。3,(1),01313,2cos60, 31 ,1101001000 (兩1之間依次多一個0),中無理數(shù)有 ,整數(shù)有 ,負(fù)數(shù)有 。4. 若a的相反數(shù)是27,則a| ;5若|a|,則a= 5若實(shí)數(shù)x,y滿足等式(x3)24y0,則xy的值是 6實(shí)數(shù)可分為() (A)正數(shù)和零(B)有理數(shù)和無理數(shù)(C)負(fù)數(shù)和零 (D)正數(shù)和負(fù)數(shù)*7若2a與1a互為相反數(shù),則a等于()(A)1 (B)1 (C) (D)8當(dāng)a為實(shí)數(shù)時,=a在數(shù)軸上對應(yīng)的點(diǎn)在()(A)原點(diǎn)右側(cè)(B)原點(diǎn)左側(cè)(C)原點(diǎn)或原點(diǎn)的右側(cè)(D)原點(diǎn)或原點(diǎn)左側(cè)*9代數(shù)式的所有可能的值有()(A)2個(B)3個(C)4個(D)無數(shù)個10已知實(shí)數(shù)a、b在數(shù)軸上對應(yīng)點(diǎn)的位置如圖(1)比較ab與a+b的大小(2)化簡|ba|+|a+b|11實(shí)數(shù)、在數(shù)軸上的對應(yīng)點(diǎn)如圖所示,其中試化簡:2*12已知等腰三角形一邊長為,一邊長,且(2)2920 。求它的周長。13若3,5為三角形三邊,化簡: