中學(xué)八級(上)期末數(shù)學(xué)試卷兩套合集附答案解析

上傳人:zhu****ng 文檔編號:100866561 上傳時間:2022-06-03 格式:DOCX 頁數(shù):50 大?。?09.89KB
收藏 版權(quán)申訴 舉報 下載
中學(xué)八級(上)期末數(shù)學(xué)試卷兩套合集附答案解析_第1頁
第1頁 / 共50頁
中學(xué)八級(上)期末數(shù)學(xué)試卷兩套合集附答案解析_第2頁
第2頁 / 共50頁
中學(xué)八級(上)期末數(shù)學(xué)試卷兩套合集附答案解析_第3頁
第3頁 / 共50頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《中學(xué)八級(上)期末數(shù)學(xué)試卷兩套合集附答案解析》由會員分享,可在線閱讀,更多相關(guān)《中學(xué)八級(上)期末數(shù)學(xué)試卷兩套合集附答案解析(50頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2017年中學(xué)八年級(上)期末數(shù)學(xué)試卷兩套合集附答案解析 八年級(上)期末數(shù)學(xué)試卷 一、選擇題(本大題共10小題,每小題3分,共30分) 1.下列計劃圖形,不一定是軸對稱圖形的是( ?。? A.角 B.等腰三角形 C.長方形 D.直角三角形 2.若分式有意義,則x滿足的條件是( ?。? A.x=1 B.x=﹣1 C.x≠1 D.x≠﹣1 3.下列運算中正確的是( ?。? A.a(chǎn)3+a3=2a6 B.a(chǎn)2?a3=a6 C.(a2)3=a5 D.a(chǎn)2÷a5=a﹣3 4.分式與的最簡公分母是( ?。? A.a(chǎn)b B.3ab C.3a2b2 D.3a2b6 5.如圖,點B、F、C、E在一

2、條直線上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列選項中的一個條件是( ?。? A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC 6.若等腰三角形的兩邊長分別是4和9,則它的周長是(  ) A.17 B.22 C.17或22 D.13 7.若x+m與2﹣x的乘積中不含x的一次項,則實數(shù)m的值為(  ) A.﹣2 B.2 C.0 D.1 8.從邊長為a的大正方形紙板中挖去一個邊長為b的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙).那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為(  ) A.a(chǎn)

3、2﹣b2=(a﹣b)2 B.(a+b)2=a2+2ab+b2 C.(a﹣b)2=a2﹣2ab+b2 D.a(chǎn)2﹣b2=(a+b)(a﹣b) 9.三角形中,三個內(nèi)角的比為1:3:6,它的三個外角的比為( ?。? A.1:3:6 B.6:3:1 C.9:7:4 D.3:5:2 10.如圖,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN經(jīng)過點O,與AB,AC相交于點M,N,且MN∥BC,則BM,CN之間的關(guān)系是( ?。? A.BM+CN=MN B.BM﹣CN=MN C.CN﹣BM=MN D.BM﹣CN=2MN   二、填空題(本大題共6小題,每小題3分,共18分)

4、11.禽流感病毒的形狀一般為球形,直徑大約為0.000000102m,該直徑用科學(xué)記數(shù)法表示為  m. 12.一個n邊形的內(nèi)角和是1260°,那么n= ?。? 13.如圖是兩個全等三角形,圖中的字母表示三角形的邊長,則∠1等于多少度? ?。? 14.已知4y2+my+1是完全平方式,則常數(shù)m的值是  . 15.若分式方程:3無解,則k=  . 16.如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為 ?。?   三、解答題(本大題共8小題,共72分)

5、17.分解因式: (1)6xy2﹣9x2y﹣y3; (2)16x4﹣1. 18.先化簡,再求值:(+)?÷(+),其中x2+y2=17,(x﹣y)2=9. 19.如圖,點E在AB上,∠CEB=∠B,∠1=∠2=∠3,求證:CD=CA. 20.如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3). (1)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1; (2)在y軸上找出一點P,使得PA+PB的值最小,直接寫出點P的坐標(biāo); (3)在平面直角坐標(biāo)系中,找出一點A2,使△A2BC與△ABC關(guān)于直線BC對稱,直接寫出點A2的坐標(biāo). 21.甲、乙、丙三個

6、登山愛好者經(jīng)常相約去登山,今年1月甲參加了兩次登山活動. (1)1月1日甲與乙同時開始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,結(jié)果甲比乙早15分鐘到達頂峰.求甲的平均攀登速度是每分鐘多少米? (2)1月6日甲與丙去攀登另一座h米高的山,甲保持第(1)問中的速度不變,比丙晚出發(fā)0.5小時,結(jié)果兩人同時到達頂峰,問甲的平均攀登速度是丙的多少倍?(用含h的代數(shù)式表示) 22.如圖,在△ABC中,AD是它的角平分線,G是AD上的一點,BG,CG分別平分∠ABC,∠ACB,GH⊥BC,垂足為H,求證: (1)∠BGC=90°+∠BAC; (2)∠1=∠2. 23.如圖1,

7、我們在2017年1月的日歷中標(biāo)出一個十字星,并計算它的“十字差”(將十字星左右兩數(shù),上下兩數(shù)分別相乘再將所得的積作差,稱為該十字星的“十字差”).該十字星的十字差為10×12﹣4×18=48,再選擇其他位置的十字星,可以發(fā)現(xiàn)“十字差”仍為48. (1)如圖2,將正整數(shù)依次填入5列的長方形數(shù)表中,探究不同位置十字星的“十字差”,可以發(fā)現(xiàn)相應(yīng)的“十字差”也是一個定值,則這個定值為 ?。? (2)若將正整數(shù)依次填入k列的長方形數(shù)表中(k≥3),繼續(xù)前面的探究,可以發(fā)現(xiàn)相應(yīng)“十字差”為與列數(shù)k有關(guān)的定值,請用k表示出這個定值,并證明你的結(jié)論. (3)如圖3,將正整數(shù)依次填入三角形的數(shù)表中,探究不同

8、十字星的“十字差”,若某個十字星中心的數(shù)在第32行,且其相應(yīng)的“十字差”為2017,則這個十字星中心的數(shù)為 ?。ㄖ苯訉懗鼋Y(jié)果). 24.△ABC是等邊三角形,點D、E分別在邊AB、BC上,CD、AE交于點F,∠AFD=60°. (1)如圖1,求證:BD=CE; (2)如圖2,F(xiàn)G為△AFC的角平分線,點H在FG的延長線上,HG=CD,連接HA、HC,求證:∠AHC=60°; (3)在(2)的條件下,若AD=2BD,F(xiàn)H=9,求AF長.   參考答案與試題解析 一、選擇題(本大題共10小題,每小題3分,共30分) 1.下列計劃圖形,不一定是軸對稱圖形的是(  ) A

9、.角 B.等腰三角形 C.長方形 D.直角三角形 【考點】軸對稱圖形. 【分析】根據(jù)軸對稱圖形的概念求解. 【解答】解:A、角一定是軸對稱圖形,不符合題意,本選項錯誤; B、等腰三角形一定是軸對稱圖形,不符合題意,本選項錯誤; C、長方形一定是軸對稱圖形,不符合題意,本選項錯誤; D、直角三角形不一定是軸對稱圖形,符合題意,本選項正確. 故選D.   2.若分式有意義,則x滿足的條件是( ?。? A.x=1 B.x=﹣1 C.x≠1 D.x≠﹣1 【考點】分式有意義的條件. 【分析】根據(jù)分式有意義,分母不等于0列不等式求解即可. 【解答】解:由題意得,x﹣1≠0, 解

10、得x≠1. 故選C.   3.下列運算中正確的是(  ) A.a(chǎn)3+a3=2a6 B.a(chǎn)2?a3=a6 C.(a2)3=a5 D.a(chǎn)2÷a5=a﹣3 【考點】同底數(shù)冪的除法;合并同類項;同底數(shù)冪的乘法;冪的乘方與積的乘方;負(fù)整數(shù)指數(shù)冪. 【分析】根據(jù)同底數(shù)冪的乘除法則、冪的乘方及積的乘方法則,合并同類項,負(fù)整數(shù)指數(shù)冪結(jié)合各項進行判斷即可. 【解答】解:A、a3+a3=2a3,原式計算錯誤,故本項錯誤; B、a2?a3=a5,原式計算錯誤,故本項錯誤; C.(a2)3=a5,原式計算正確,故本項錯誤; D.a(chǎn)2÷a5=a﹣3,原式計算正確,故本項正確; 故選D.   4

11、.分式與的最簡公分母是( ?。? A.a(chǎn)b B.3ab C.3a2b2 D.3a2b6 【考點】最簡公分母. 【分析】先找系數(shù)的最小公倍數(shù)3,再找字母的最高次冪. 【解答】解:分式與的最簡公分母是3a2b2, 故選C.   5.如圖,點B、F、C、E在一條直線上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列選項中的一個條件是( ?。? A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC 【考點】全等三角形的判定. 【分析】根據(jù)“SAS”可添加BF=EC使△ABC≌△DEF. 【解答】解:∵AB∥ED,AB=DE, ∴∠B=∠E, ∴當(dāng)BF=

12、EC時, 可得BC=EF, 可利用“SAS”判斷△ABC≌△DEF. 故選A.   6.若等腰三角形的兩邊長分別是4和9,則它的周長是(  ) A.17 B.22 C.17或22 D.13 【考點】等腰三角形的性質(zhì);三角形三邊關(guān)系. 【分析】題目給出等腰三角形有兩條邊長為7和3,而沒有明確腰、底分別是多少,所以要進行討論,還要應(yīng)用三角形的三邊關(guān)系驗證能否組成三角形. 【解答】解:當(dāng)腰為9時,周長=9+9+4=22; 當(dāng)腰長為4時,根據(jù)三角形三邊關(guān)系可知此情況不成立; 根據(jù)三角形三邊關(guān)系可知:等腰三角形的腰長只能為9,這個三角形的周長是22. 故選:B.   7.若x

13、+m與2﹣x的乘積中不含x的一次項,則實數(shù)m的值為( ?。? A.﹣2 B.2 C.0 D.1 【考點】多項式乘多項式. 【分析】根據(jù)多項式乘以多項式的法則,可表示為(a+b)(m+n)=am+an+bm+bn,計算即可. 【解答】解:根據(jù)題意得: (x+m)(2﹣x)=2x﹣x2+2m﹣mx, ∵x+m與2﹣x的乘積中不含x的一次項, ∴m=2; 故選B.   8.從邊長為a的大正方形紙板中挖去一個邊長為b的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙).那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為( ?。? A.a(chǎn)2

14、﹣b2=(a﹣b)2 B.(a+b)2=a2+2ab+b2 C.(a﹣b)2=a2﹣2ab+b2 D.a(chǎn)2﹣b2=(a+b)(a﹣b) 【考點】等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì). 【分析】分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式. 【解答】解:陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b). 即:a2﹣b2=(a+b)(a﹣b). 所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b). 故選:D.   9.三角形中,三個內(nèi)角的比為1:3:6,它的三個外角的比為( ?。? A.

15、1:3:6 B.6:3:1 C.9:7:4 D.3:5:2 【考點】三角形的外角性質(zhì);三角形內(nèi)角和定理. 【分析】由三角形中,三個內(nèi)角的比為1:3:6,根據(jù)三角形的外角的性質(zhì),即可求得它的三個外角的比. 【解答】解:∵三角形中,三個內(nèi)角的比為1:3:6, ∴它的三個外角的比為:(3+6):(1+6):(1+3)=9:7:4. 故選:C.   10.如圖,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN經(jīng)過點O,與AB,AC相交于點M,N,且MN∥BC,則BM,CN之間的關(guān)系是(  ) A.BM+CN=MN B.BM﹣CN=MN C.CN﹣BM=MN D.B

16、M﹣CN=2MN 【考點】等腰三角形的判定與性質(zhì);平行線的性質(zhì). 【分析】只要證明BM=OM,ON=CN,即可解決問題. 【解答】證明:∵ON∥BC, ∴∠MOC=∠OCD ∵CO平分∠ACD, ∴∠ACO=∠DCO, ∴∠NOC=∠OCN, ∴CN=ON, ∵ON∥BC, ∴∠MOB=∠OBD ∵BO平分∠ABC, ∴∠MBO=∠CBO, ∴∠MBO=∠MOB, ∴OM=BM ∵OM=ON+MN,OM=BM,ON=CN, ∴BM=CN+MN, ∴MN=BM﹣CN. 故選B.   二、填空題(本大題共6小題,每小題3分,共18分) 11.禽流感病毒的形

17、狀一般為球形,直徑大約為0.000000102m,該直徑用科學(xué)記數(shù)法表示為 1.02×10﹣7 m. 【考點】科學(xué)記數(shù)法—表示較小的數(shù). 【分析】絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定. 【解答】解:0.000000102=1.02×10﹣7. 故答案為:1.02×10﹣7.   12.一個n邊形的內(nèi)角和是1260°,那么n= 9?。? 【考點】多邊形內(nèi)角與外角. 【分析】根據(jù)多邊形的內(nèi)角和公式:(n﹣2).180 (n≥3)且n為整數(shù))可得方程:

18、(n﹣2)×180=1260,再解方程即可. 【解答】解:由題意得:(n﹣2)×180=1260, 解得:n=9, 故答案為:9.   13.如圖是兩個全等三角形,圖中的字母表示三角形的邊長,則∠1等于多少度? 66°?。? 【考點】全等三角形的性質(zhì). 【分析】根據(jù)圖形和親弟弟三角形的性質(zhì)得出∠1=∠C,∠D=∠A=54°,∠E=∠B=60°,根據(jù)三角形內(nèi)角和定理求出即可. 【解答】解: ∵△ABC≌△DEF, ∴∠1=∠C,∠D=∠A=54°,∠E=∠B=60°, ∴∠1=180°﹣∠E﹣∠F=66°, 故答案為:66°.   14.已知4y2+my+1是完全平

19、方式,則常數(shù)m的值是 ±4?。? 【考點】完全平方式. 【分析】利用完全平方公式的結(jié)構(gòu)特征確定出m的值即可. 【解答】解:∵4y2+my+1是完全平方式, ∴m=±4, 故答案為:±4   15.若分式方程:3無解,則k= 3或1?。? 【考點】分式方程的解. 【分析】分式方程無解的條件是:去分母后所得整式方程無解,或解這個整式方程得到的解使原方程的分母等于0. 【解答】解:方程去分母得:3(x﹣3)+2﹣kx=﹣1, 整理得(3﹣k)x=6, 當(dāng)整式方程無解時,3﹣k=0即k=3, 當(dāng)分式方程無解時,x=3,此時3﹣k=2,k=1, 所以k=3或1時,原方程無解.

20、故答案為:3或1.   16.如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為 8?。? 【考點】軸對稱﹣最短路線問題;線段垂直平分線的性質(zhì);等腰三角形的性質(zhì);勾股定理. 【分析】連接AD交EF與點M′,連結(jié)AM,由線段垂直平分線的性質(zhì)可知AM=MB,則BM+DM=AM+DM,故此當(dāng)A、M、D在一條直線上時,MB+DM有最小值,然后依據(jù)要三角形三線合一的性質(zhì)可證明AD為△ABC底邊上的高線,依據(jù)三角形的面積為12可求得AD的長. 【解答】解:連接AD交EF

21、與點M′,連結(jié)AM. ∵△ABC是等腰三角形,點D是BC邊的中點, ∴AD⊥BC, ∴S△ABC=BC?AD=×4×AD=12,解得AD=6, ∵EF是線段AB的垂直平分線, ∴AM=BM. ∴BM+MD=MD+AM. ∴當(dāng)點M位于點M′處時,MB+MD有最小值,最小值6. ∴△BDM的周長的最小值為DB+AD=2+6=8.   三、解答題(本大題共8小題,共72分) 17.分解因式: (1)6xy2﹣9x2y﹣y3; (2)16x4﹣1. 【考點】提公因式法與公式法的綜合運用. 【分析】(1)原式提取公因式,再利用完全平方公式分解即可; (2)原式利用平方

22、差公式分解即可. 【解答】解:(1)原式=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2; (2)原式=(4x2+1)(4x2﹣1)=(4x2+1)(2x+1)(2x﹣1).   18.先化簡,再求值:(+)?÷(+),其中x2+y2=17,(x﹣y)2=9. 【考點】分式的化簡求值. 【分析】先將原式進行化簡,然后根據(jù)x2+y2=17,(x﹣y)2=9求出x+y和xy的值并代入求解即可. 【解答】解:∵x2+y2=17,(x﹣y)2=9, ∴2xy=x2+y2﹣(x﹣y)2=17﹣9=8, ∴(x+y)2=x2+y2+2xy=17+8=25, ∴x+y=5,xy=4,

23、 ∴原式=×÷ =× =× =.   19.如圖,點E在AB上,∠CEB=∠B,∠1=∠2=∠3,求證:CD=CA. 【考點】全等三角形的判定與性質(zhì). 【分析】由∠1=∠3、∠CFD=∠EFA知∠D=∠A,由∠1=∠2知∠DCE=∠ACB,由∠CEB=∠B知CE=CB,從而證△DCE≌△ACB得CD=CA. 【解答】證明:如圖, ∵∠1=∠3,∠CFD=∠EFA, ∴180°﹣∠1﹣∠CFD=180°﹣∠3﹣∠EFA,即∠D=∠A, ∵∠1=∠2, ∴∠1+∠ACE=∠2+∠ACE,即∠DCE=∠ACB, 又∵∠CEB=∠B, ∴CE=CB, 在△DCE和

24、△ACB中, ∵, ∴△DCE≌△ACB(AAS), ∴CD=CA.   20.如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3). (1)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1; (2)在y軸上找出一點P,使得PA+PB的值最小,直接寫出點P的坐標(biāo); (3)在平面直角坐標(biāo)系中,找出一點A2,使△A2BC與△ABC關(guān)于直線BC對稱,直接寫出點A2的坐標(biāo). 【考點】作圖﹣軸對稱變換;軸對稱﹣最短路線問題. 【分析】(1)先作出各點關(guān)于y軸的對稱點,再順次連接即可; (2)連接AB1交y軸于點P,利用待定系數(shù)法求出直線AB1的解析式,進而

25、可得出P點坐標(biāo); (3)找出點A關(guān)于直線BC的對稱點,并寫出其坐標(biāo)即可. 【解答】解:(1)如圖所示; (2)設(shè)直線AB1的解析式為y=kx+b(k≠0), ∵A(﹣1,5),B1(1,0), ∴,解得, ∴直線AB1的解析式為:y=﹣x+, ∴P(0,2.5); (3)如圖所示,A2(﹣6,0).   21.甲、乙、丙三個登山愛好者經(jīng)常相約去登山,今年1月甲參加了兩次登山活動. (1)1月1日甲與乙同時開始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,結(jié)果甲比乙早15分鐘到達頂峰.求甲的平均攀登速度是每分鐘多少米? (2)1月6日甲與丙去攀登另一

26、座h米高的山,甲保持第(1)問中的速度不變,比丙晚出發(fā)0.5小時,結(jié)果兩人同時到達頂峰,問甲的平均攀登速度是丙的多少倍?(用含h的代數(shù)式表示) 【考點】分式方程的應(yīng)用. 【分析】(1)根據(jù)題意可以列出相應(yīng)的分式方程,從而可以求得甲的平均攀登速度; (2)根據(jù)(1)中甲的速度可以表示出丙的速度,再用甲的速度比丙的平均攀登速度即可解答本題. 【解答】解:(1)設(shè)乙的速度為x米/分鐘, , 解得,x=10, 經(jīng)檢驗,x=10是原分式方程的解, ∴1.2x=12, 即甲的平均攀登速度是12米/分鐘; (2)設(shè)丙的平均攀登速度是y米/分, , 化簡,得 y=, ∴甲的平均攀登

27、速度是丙的:倍, 即甲的平均攀登速度是丙的倍.   22.如圖,在△ABC中,AD是它的角平分線,G是AD上的一點,BG,CG分別平分∠ABC,∠ACB,GH⊥BC,垂足為H,求證: (1)∠BGC=90°+∠BAC; (2)∠1=∠2. 【考點】三角形內(nèi)角和定理. 【分析】(1)由三角形內(nèi)角和定理可知∠ABC+∠ACB=180°﹣∠BAC,然后利用角平分線的性質(zhì)即可求出∠BGC=90°+∠BAC. (2)由于AD是它的角平分線,所以∠BAD=∠CAD,然后根據(jù)圖形可知:∠1=∠BAD+∠ABG,∠2=90°﹣∠GCH,最后根據(jù)三角形的內(nèi)角和定理以及外角的性質(zhì)即可求出答案.

28、 【解答】解:(1)由三角形內(nèi)角和定理可知:∠ABC+∠ACB=180°﹣∠BAC, ∵BG,CG分別平分∠ABC,∠ACB, ∠GBC=∠ABC,∠GCB=∠ACB ∴∠GBC+∠GCB=(∠ABC+∠ACB)==90°﹣∠BAC ∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣(∠ABC+∠ACB)=90°+∠BAC; (2)∵AD是它的角平分線, ∴∠BAD=∠CAD ∴∠1=∠BAD+∠ABG, ∵GH⊥BC, ∴∠GHC=90° ∴∠2=90°﹣∠GCH =90°﹣∠ACB =90°﹣ =∠DAC+∠ADC ∵∠ADC=∠ABC+∠BAD, ∴

29、∠ADC=∠ABC+∠∠BAD =∠ABG+∠BAD, ∴∠2=∠DAC+∠ADC =∠BAD+∠BAD+∠ABG =∠BAD+∠ABG, ∴∠1=∠2,   23.如圖1,我們在2017年1月的日歷中標(biāo)出一個十字星,并計算它的“十字差”(將十字星左右兩數(shù),上下兩數(shù)分別相乘再將所得的積作差,稱為該十字星的“十字差”).該十字星的十字差為10×12﹣4×18=48,再選擇其他位置的十字星,可以發(fā)現(xiàn)“十字差”仍為48. (1)如圖2,將正整數(shù)依次填入5列的長方形數(shù)表中,探究不同位置十字星的“十字差”,可以發(fā)現(xiàn)相應(yīng)的“十字差”也是一個定值,則這個定值為 24?。? (2)若將正整數(shù)依

30、次填入k列的長方形數(shù)表中(k≥3),繼續(xù)前面的探究,可以發(fā)現(xiàn)相應(yīng)“十字差”為與列數(shù)k有關(guān)的定值,請用k表示出這個定值,并證明你的結(jié)論. (3)如圖3,將正整數(shù)依次填入三角形的數(shù)表中,探究不同十字星的“十字差”,若某個十字星中心的數(shù)在第32行,且其相應(yīng)的“十字差”為2017,則這個十字星中心的數(shù)為 975?。ㄖ苯訉懗鼋Y(jié)果). 【考點】規(guī)律型:數(shù)字的變化類. 【分析】(1)根據(jù)題意求出相應(yīng)的“十字差”,即可確定出所求定值; (2)定值為k2﹣1=(k+1)(k﹣1),理由為:設(shè)十字星中心的數(shù)為x,表示出十字星左右兩數(shù),上下兩數(shù),進而表示出十字差,化簡即可得證; (3)設(shè)正中間的數(shù)為a

31、,則上下兩個數(shù)為a﹣62,a+64,左右兩個數(shù)為a﹣1,a+1,根據(jù)相應(yīng)的“十字差”為2017求出a的值即可. 【解答】解:(1)根據(jù)題意得:6×8﹣2×12=48﹣24=24; 故答案為:24; (2)定值為k2﹣1=(k+1)(k﹣1); 證明:設(shè)十字星中心的數(shù)為x,則十字星左右兩數(shù)分別為x﹣1,x+1,上下兩數(shù)分別為x﹣k,x+k(k≥3), 十字差為(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1, 故這個定值為k2﹣1=(k+1)(k﹣1); (3)設(shè)正中間的數(shù)為a,則上下兩個數(shù)為a﹣62,a+64,左右兩個數(shù)為a﹣1,a+1, 根據(jù)

32、題意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2017, 解得:a=975. 故答案為:975.   24.△ABC是等邊三角形,點D、E分別在邊AB、BC上,CD、AE交于點F,∠AFD=60°. (1)如圖1,求證:BD=CE; (2)如圖2,F(xiàn)G為△AFC的角平分線,點H在FG的延長線上,HG=CD,連接HA、HC,求證:∠AHC=60°; (3)在(2)的條件下,若AD=2BD,F(xiàn)H=9,求AF長. 【考點】全等三角形的判定與性質(zhì);等邊三角形的性質(zhì). 【分析】(1)根據(jù)等邊三角形的性質(zhì)得出AB=BC,∠BAC=∠C=∠ABE=60°,根據(jù)SAS推出△AB

33、E≌△BCD,即可證得結(jié)論; (2)根據(jù)角平分線的性質(zhì)定理證得CM=CN,利用∠CEM=∠ACE+∠CAE=60°+∠CAE,∠CGN=∠AFH+∠CAE=60°+∠CAE,得出∠CEM=∠CGN,然后根據(jù)AAS證得△ECM≌△GCN,得出CG=CE,EM=GN,∠ECM=∠GCN,進而證得△AMC≌△HNC,得出∠ACM=∠HCN,AC=HC,從而證得△ACH是等邊三角形,證得∠AHC=60°; (3)在FH上截取FK=FC,得出△FCK是等邊三角形,進一步得出FC=KC=FK,∠ACF=∠HCK,證得△AFC≌△HKC得出AF=HK,從而得到HF=AF+FC=9,由AD=2BD可知AG

34、=2CG,再由=,根據(jù)等高三角形面積比等于底的比得出===2,再由AF+FC=9求得. 【解答】解:(1)如圖1,∵△ABC是等邊三角形, ∴∠B=∠ACE=60°BC=AC, ∵∠AFD=∠CAE+∠ACD=60°∠BCD+∠ACD=∠ACB=60°, ∴∠BCD=∠CAE, 在△ABE和△BCD中, ∴△ABE≌△BCD(ASA), ∴BD=CE; (2)如圖2,作CM⊥AE交AE的延長線于M,作CN⊥HF于N, ∵∠EFC=∠AFD=60° ∴∠AFC=120°, ∵FG為△AFC的角平分線, ∴∠CFH=∠AFH=60°, ∴∠CFH=∠CFE=60°,

35、 ∵CM⊥AE,CN⊥HF, ∴CM=CN, ∵∠CEM=∠ACE+∠CAE=60°+∠CAE,∠CGN=∠AFH+∠CAE=60°+∠CAE, ∴∠CEM=∠CGN, 在△ECM和△GCN中 ∴△ECM≌△GCN(AAS), ∴CE=CG,EM=GN,∠ECM=∠GCN, ∴∠MCN=∠ECG=60°, ∵△ABE≌△BCD, ∵AE=CD, ∵HG=CD, ∴AE=HG, ∴AE+EM=HG+GN,即AM=HN, 在△AMC和△HNC中 ∴△AMC≌△HNC(SAS), ∴∠ACM=∠HCN,AC=HC, ∴∠ACM﹣∠ECM=∠HCN﹣∠GCN,即

36、∠ACE=∠HCG=60°, ∴△ACH是等邊三角形, ∴∠AHC=60°; (3)如圖3,在FH上截取FK=FC, ∵∠HFC=60°, ∴△FCK是等邊三角形, ∴∠FKC=60°,F(xiàn)C=KC=FK, ∵∠ACH=60°, ∴∠ACF=∠HCK, 在△AFC和△HKC中 ∴△AFC≌△HKC(SAS), ∴AF=HK, ∴HF=AF+FC=9, ∵AD=2BD,BD=CE=CG,AB=AC, ∴AG=2CG, ∴==, 作GW⊥AE于W,GQ⊥DC于Q, ∵FG為△AFC的角平分線, ∴GW=GQ, ∵===, ∴AF=2CF, ∴AF=6.

37、   八年級(上)期末數(shù)學(xué)試卷 一、選擇題(本大題共8小題,每小題3分,共24分) 1.下列四個圖案,其中是軸對稱圖形的是( ?。? A. B. C. D. 2.在平面直角坐標(biāo)系中,點M(﹣2,3)在(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.下列四組線段中,可以構(gòu)成直角三角形的是( ?。? A.3,5,6 B.2,3,4 C.1,,2 D.3,4, 4.如圖,∠C=∠D=90°,AC=AD,那么△ABC與△ABD全等的理由是( ?。? A.HL B.SAS C.ASA D.AAS 5.在,﹣,,這四個數(shù)中,無理數(shù)有(  )

38、A.1個 B.2個 C.3個 D.4個 6.已知地球上海洋面積約為361000000km2,361000000用科學(xué)記數(shù)法可以表示為(  ) A.36.1×107 B.3.61×107 C.3.61×108 D.3.61×109 7.在平面直角坐標(biāo)系中,把直線y=2x﹣3沿y軸向上平移2個單位后,得到的直線的函數(shù)表達式為( ?。? A.y=2x+2 B.y=2x﹣5 C.y=2x+1 D.y=2x﹣1 8.在一次800米的長跑比賽中,甲、乙兩人所跑的路程s(米)與各自所用時間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,則下列說法正確的是( ?。? A.甲的速度隨時間的增加而

39、增大 B.乙的平均速度比甲的平均速度大 C.在起跑后第180秒時,兩人相遇 D.在起跑后第50秒時,乙在甲的前面   二、填空題(本大題共10小題,每小題3分,共30分) 9.9的算術(shù)平方根是 ?。? 10.P(﹣3,2)關(guān)于x軸對稱的點的坐標(biāo)是 ?。? 11.已知△ABC≌△DEF,若∠B=40°,∠D=30°,則∠F=  °. 12.如圖,在△ABC中,∠B=40°,BC邊的垂直平分線交BC于D,交AB于E,若CE平分∠ACB,則∠A=  °. 13.已知△ABC的三邊長分別為5、12、13,則最長邊上的中線長為 ?。? 14.已知一次函數(shù)y=2x+b﹣1,b=  時,

40、函數(shù)圖象經(jīng)過原點. 15.已知點A(3,y1)、B(2,y2)在一次函數(shù)y=﹣x+3的圖象上,則y1,y2的大小關(guān)系是y1  y2.(填>、=或<) 16.直線y=x+6與x軸、y軸圍成的三角形面積為 ?。ㄆ椒絾挝唬? 17.如圖,已知一次函數(shù)y=2x+b和y=kx﹣3(k≠0)的圖象交于點P(4,﹣6),則二元一次方程組的解是  . 18.如圖,△AOB是等腰三角形,OA=OB,點B在x軸的正半軸上,點A的坐標(biāo)是(1,1),則點B的坐標(biāo)是  .   三、解答題(本大題共10小題,共96分) 19.(1)計算:﹣(1+)0+ (2)求x的值:(x+4)3=﹣64. 2

41、0.如圖:點C,D在AB上,且AC=BD,AE=FB,DE=FC.求證:△ADE≌△BCF. 21.如圖,AC=AD,線段AB經(jīng)過線段CD的中點E,求證:BC=BD. 22.圖1、圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,點A和點B在小正方形的頂點上. (1)在圖1中畫出△ABC(點C在小正方形的頂點上),使△ABC為直角三角形(畫一個即可); (2)在圖2中畫出△ABD(點D在小正方形的頂點上),使△ABD為等腰三角形(畫一個即可). 23.如圖,一架2.5米長的梯子AB,斜靠在一豎直的墻AC上,這時梯子的頂端A到墻底端C的距離為2.4米

42、,如果梯子的底端B沿CB向外平移0.8米至B1,求梯子頂端A沿墻下滑的距離AA1的長度. 24.已知一次函數(shù)y1=kx+b與函數(shù)y=﹣2x的圖象平行,且與x軸的交點A的橫坐標(biāo)為2. (1)求一次函數(shù)y1=kx+b的表達式; (2)在給定的網(wǎng)格中,畫出函數(shù)一次函數(shù)y2=x+1的圖象,并求出一次函數(shù)y1=kx+b與y=x+1圖象的交點坐標(biāo); (3)根據(jù)圖象直接寫出,當(dāng)x取何值時,y1>y2. 25.如圖,△ABC是等邊三角形,點D、E分別是BC、CA延長線上的點,且CD=AE,DA的延長線交BE于點F. (1)求證:△ABE≌△CAD; (2)求∠BFD的度數(shù). 26.

43、某工廠每天生產(chǎn)A、B兩種款式的布制環(huán)保購物袋共4500個,已知A種購物袋成本2元/個,售價2.3元/個;B種購物袋成本3元/個,售價3.5元/個.設(shè)每天生產(chǎn)A種購物袋x個,該工廠每天共需成本y元,共獲利w元. (1)求出y與x的函數(shù)表達式; (2)求出w與x的函數(shù)表達式; (3)如果該廠每天最多投入成本10000元,那么每天最多獲利多少元? 27.為促進節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實行居民生活用電階梯電價方案,圖中的折線反映了每戶居民每月用電電費y(單位:元)與用電量x(單位:度)間的函數(shù)關(guān)系. (1)根據(jù)圖象,階梯電價方案分為三個檔次,請?zhí)顚懴卤恚?  檔次  第一檔  第二

44、檔  第三檔  每月用電量x(度)  0<x≤140       (2)小明家某月用電70度,需交電費  元; (3)求第二檔每月電費y(元)與用電量x(單位:度)之間的函數(shù)表達式; (4)在每月用電量超過230度時,每度電比第二檔多m元,小剛家某月用電290度,繳納電費153元,求m的值. 28.如圖,平面直角坐標(biāo)系中,直線AB:y=﹣x+b交y軸于點A(0,4),交x軸于點B. (1)求直線AB的表達式和點B的坐標(biāo); (2)直線l垂直平分OB交AB于點D,交x軸于點E,點P是直線l上一動點,且在點D的上方,設(shè)點P的縱坐標(biāo)為n. ①用含n的代數(shù)式表示△ABP的面積

45、; ②當(dāng)S△ABP=8時,求點P的坐標(biāo); ③在②的條件下,以PB為斜邊在第一象限作等腰直角△PBC,求點C的坐標(biāo).   參考答案與試題解析 一、選擇題(本大題共8小題,每小題3分,共24分) 1.下列四個圖案,其中是軸對稱圖形的是( ?。? A. B. C. D. 【考點】軸對稱圖形. 【分析】根據(jù)軸對稱的定義結(jié)合各選項的特點即可得出答案. 【解答】解:A、不是軸對稱圖形,故本選項錯誤; B、不是軸對稱圖形,故本選項錯誤; C、是軸對稱圖形,故本選項正確; D、不是軸對稱圖形,故本選項錯誤; 故選:C.   2.在平面直角坐標(biāo)系中,點M(﹣2,3)在(  

46、) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【考點】點的坐標(biāo). 【分析】橫坐標(biāo)小于0,縱坐標(biāo)大于0,則這點在第二象限. 【解答】解:∵﹣2<0,3>0, ∴(﹣2,3)在第二象限, 故選B.   3.下列四組線段中,可以構(gòu)成直角三角形的是(  ) A.3,5,6 B.2,3,4 C.1,,2 D.3,4, 【考點】勾股定理的逆定理. 【分析】由勾股定理的逆定理,只要驗證兩小邊的平方和等于最長邊的平方即可. 【解答】解:A、32+52≠62,不能構(gòu)成直角三角形,故不符合題意; B、22+32≠42,不能構(gòu)成直角三角形,故不符合題意; C、12+()2=

47、22,能構(gòu)成直角三角形,故符合題意; D、32+42≠()2,不能構(gòu)成直角三角形,故不符合題意. 故選C.   4.如圖,∠C=∠D=90°,AC=AD,那么△ABC與△ABD全等的理由是( ?。? A.HL B.SAS C.ASA D.AAS 【考點】全等三角形的判定;角平分線的性質(zhì). 【分析】已知∠C=∠D=90°,AC=AD,且公共邊AB=AB,故△ABC與△ABD全等 【解答】解:在Rt△ABC與Rt△ABD中, ∴Rt△ABC≌Rt△ABD(HL) 故選(A)   5.在,﹣,,這四個數(shù)中,無理數(shù)有( ?。? A.1個 B.2個 C.3個 D.4個 【

48、考點】無理數(shù). 【分析】根據(jù)無理數(shù)的定義,可得答案. 【解答】解:﹣,是無理數(shù), 故選:B.   6.已知地球上海洋面積約為361000000km2,361000000用科學(xué)記數(shù)法可以表示為(  ) A.36.1×107 B.3.61×107 C.3.61×108 D.3.61×109 【考點】科學(xué)記數(shù)法—表示較大的數(shù). 【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù). 【解答】解:將361000

49、000用科學(xué)記數(shù)法表示為3.61×108. 故選C   7.在平面直角坐標(biāo)系中,把直線y=2x﹣3沿y軸向上平移2個單位后,得到的直線的函數(shù)表達式為(  ) A.y=2x+2 B.y=2x﹣5 C.y=2x+1 D.y=2x﹣1 【考點】一次函數(shù)圖象與幾何變換. 【分析】根據(jù)平移法則上加下減可得出平移后的解析式. 【解答】解:由題意得:平移后的解析式為:y=2x﹣3+2,即y=2x﹣1. 故選D.   8.在一次800米的長跑比賽中,甲、乙兩人所跑的路程s(米)與各自所用時間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,則下列說法正確的是( ?。? A.甲的速度隨

50、時間的增加而增大 B.乙的平均速度比甲的平均速度大 C.在起跑后第180秒時,兩人相遇 D.在起跑后第50秒時,乙在甲的前面 【考點】一次函數(shù)的應(yīng)用. 【分析】A、由于線段OA表示甲所跑的路程S(米)與所用時間t(秒)之間的函數(shù)圖象,由此可以確定甲的速度是沒有變化的; B、甲比乙先到,由此可以確定甲的平均速度比乙的平均速度快; C、根據(jù)圖象可以知道起跑后180秒時,兩人的路程確定是否相遇; D、根據(jù)圖象知道起跑后50秒時OB在OA的上面,由此可以確定乙是否在甲的前面. 【解答】解:A、∵線段OA表示甲所跑的路程S(米)與所用時間t(秒)之間的函數(shù)圖象,∴甲的速度是沒有變化的,

51、故選項錯誤; B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故選項錯誤; C、∵起跑后180秒時,兩人的路程不相等,∴他們沒有相遇,故選項錯誤; D、∵起跑后50秒時OB在OA的上面,∴乙是在甲的前面,故選項正確. 故選D.   二、填空題(本大題共10小題,每小題3分,共30分) 9.9的算術(shù)平方根是 3 . 【考點】算術(shù)平方根. 【分析】9的平方根為±3,算術(shù)平方根為非負(fù),從而得出結(jié)論. 【解答】解:∵(±3)2=9, ∴9的算術(shù)平方根是|±3|=3. 故答案為:3.   10.P(﹣3,2)關(guān)于x軸對稱的點的坐標(biāo)是?。ī?,﹣2)?。? 【考點】關(guān)于x軸、

52、y軸對稱的點的坐標(biāo). 【分析】根據(jù)點P(m,n)關(guān)于x軸對稱點的坐標(biāo)P′(m,﹣n),然后將題目所給點的坐標(biāo)代入即可求得解. 【解答】解:根據(jù)軸對稱的性質(zhì),得點P(﹣3,2)關(guān)于x軸對稱的點的坐標(biāo)為(﹣3,﹣2). 故答案為:(﹣3,﹣2).   11.已知△ABC≌△DEF,若∠B=40°,∠D=30°,則∠F= 110 °. 【考點】全等三角形的性質(zhì). 【分析】先根據(jù)全等三角形的性質(zhì)得到∠E=∠B=40°,然后根據(jù)三角形內(nèi)角和求∠F的度數(shù). 【解答】解:∵△ABC≌△DEF, ∴∠E=∠B=40°, ∴∠F=180°﹣∠E﹣∠D=180°﹣40°﹣30°=110°.

53、故答案為110.   12.如圖,在△ABC中,∠B=40°,BC邊的垂直平分線交BC于D,交AB于E,若CE平分∠ACB,則∠A= 60 °. 【考點】線段垂直平分線的性質(zhì). 【分析】由線段垂直平分線和角平分線的定義可得∠B=∠ECB=∠ACE=40°,在△ABC中由三角形內(nèi)角和定理可求得∠A. 【解答】解:∵E在線段BC的垂直平分線上, ∴BE=CE, ∴∠ECB=∠B=40°, ∵CE平分∠ACB, ∴∠ACD=2∠ECB=80°, 又∵∠A+∠B+∠ACB=180°, ∴∠A=180°﹣∠B﹣∠ACB=60°, 故答案為:60.   13.已知△ABC的

54、三邊長分別為5、12、13,則最長邊上的中線長為  . 【考點】直角三角形斜邊上的中線;勾股定理的逆定理. 【分析】先根據(jù)勾股定理的逆定理判斷出△ABC的形狀,再由直角三角形的性質(zhì)即可得出結(jié)論. 【解答】解:∵△ABC的三邊長分別為5、12、13,52+122=132, ∴△ABC是直角三角形, ∴最長邊上的中線長=. 故答案為:.   14.已知一次函數(shù)y=2x+b﹣1,b= 1 時,函數(shù)圖象經(jīng)過原點. 【考點】一次函數(shù)圖象上點的坐標(biāo)特征. 【分析】直接把原點坐標(biāo)(0,0)代入一次函數(shù)y=2x+b﹣1求出b的值即可. 【解答】解:∵一次函數(shù)y=2x+b﹣1的圖象過原點,

55、 ∴0=b﹣1,解得b=1. 故答案為:1.   15.已知點A(3,y1)、B(2,y2)在一次函數(shù)y=﹣x+3的圖象上,則y1,y2的大小關(guān)系是y1 < y2.(填>、=或<) 【考點】一次函數(shù)圖象上點的坐標(biāo)特征. 【分析】首先判斷一次函數(shù)一次項系數(shù)為負(fù),然后根據(jù)一次函數(shù)的性質(zhì)當(dāng)k<0,y隨x的增大而減小即可作出判斷. 【解答】解:∵一次函數(shù)y=﹣x+3中k=﹣<0, ∴y隨x增大而減小, ∵3>2, ∴y1<y2. 故答案為<.   16.直線y=x+6與x軸、y軸圍成的三角形面積為 18?。ㄆ椒絾挝唬? 【考點】一次函數(shù)圖象上點的坐標(biāo)特征. 【分析】分別求

56、出直線與x軸、y軸的交點坐標(biāo),再根據(jù)直角三角形的面積公式求解即可.注意線段的長度是正數(shù). 【解答】解:因為直線y=x+6中, ﹣=﹣=﹣6, ∴b=6, 設(shè)直線與x軸、y軸的交點坐標(biāo)分別為A(﹣6,0),B(0,6), ∴S△AOB=×|﹣6|×6=×6×6=18, 故直線y=x+6與x軸、y軸圍成的三角形面積為18.   17.如圖,已知一次函數(shù)y=2x+b和y=kx﹣3(k≠0)的圖象交于點P(4,﹣6),則二元一次方程組的解是 ?。? 【考點】一次函數(shù)與二元一次方程(組). 【分析】兩個一次函數(shù)的交點坐標(biāo)為P(4,﹣6),那么交點坐標(biāo)同時滿足兩個函數(shù)的解析式,而所求

57、的方程組正好是由兩個函數(shù)的解析式所構(gòu)成,因此兩函數(shù)的交點坐標(biāo)即為方程組的解. 【解答】解:∵一次函數(shù)y=2x+b和y=kx﹣3(k≠0)的圖象交于點P(4,﹣6), ∴點P(4,﹣6)滿足二元一次方程組; ∴方程組的解是. 故答案為.   18.如圖,△AOB是等腰三角形,OA=OB,點B在x軸的正半軸上,點A的坐標(biāo)是(1,1),則點B的坐標(biāo)是?。?,0) . 【考點】勾股定理;坐標(biāo)與圖形性質(zhì);等腰三角形的性質(zhì). 【分析】由勾股定理求出OA,得出OB,即可得出結(jié)果. 【解答】解:根據(jù)勾股定理得:OA==, ∴OB=OA=, ∴點B的坐標(biāo)是(,0). 故答案為:(,0)

58、.   三、解答題(本大題共10小題,共96分) 19.(1)計算:﹣(1+)0+ (2)求x的值:(x+4)3=﹣64. 【考點】實數(shù)的運算;立方根;零指數(shù)冪. 【分析】(1)分別根據(jù)0指數(shù)冪的計算法則、數(shù)的開方法則計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進行計算即可; (2)直接把方程兩邊開立方即可得出結(jié)論. 【解答】解:(1)原式=﹣2﹣1+2 =﹣1; (2)兩邊開方得,x+4=﹣4 解得x=﹣8.   20.如圖:點C,D在AB上,且AC=BD,AE=FB,

59、DE=FC.求證:△ADE≌△BCF. 【考點】全等三角形的判定. 【分析】先依據(jù)等式的性質(zhì)證明AD=BC,然后依據(jù)SSS進行證明即可. 【解答】證明:∵AC=BD, ∴AC+CD=BD+CD,即AD=BC. 在△ADE和△BCF中,, ∴△ADE≌△BCF.   21.如圖,AC=AD,線段AB經(jīng)過線段CD的中點E,求證:BC=BD. 【考點】線段垂直平分線的性質(zhì). 【分析】根據(jù)題意得到AB垂直平分CD,根據(jù)線段垂直平分線的性質(zhì)證明即可. 【解答】證明:∵AC=AD,E是CD中點, ∴AB垂直平分CD, ∴BC=BD.   22.圖1、圖2是兩張形狀、大

60、小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,點A和點B在小正方形的頂點上. (1)在圖1中畫出△ABC(點C在小正方形的頂點上),使△ABC為直角三角形(畫一個即可); (2)在圖2中畫出△ABD(點D在小正方形的頂點上),使△ABD為等腰三角形(畫一個即可). 【考點】作圖—應(yīng)用與設(shè)計作圖. 【分析】(1)利用網(wǎng)格結(jié)構(gòu),過點A的豎直線與過點B的水平線相交于點C,連接即可,或過點A的水平線與過點B的豎直線相交于點C,連接即可; (2)根據(jù)網(wǎng)格結(jié)構(gòu),作出BD=AB或AB=AD,連接即可得解. 【解答】解:(1)如圖1,①、②,畫一個即可; (2)如圖2,①、②,畫一

61、個即可.   23.如圖,一架2.5米長的梯子AB,斜靠在一豎直的墻AC上,這時梯子的頂端A到墻底端C的距離為2.4米,如果梯子的底端B沿CB向外平移0.8米至B1,求梯子頂端A沿墻下滑的距離AA1的長度. 【考點】勾股定理的應(yīng)用. 【分析】在直角三角形ABC中,已知AB,AC,根據(jù)勾股定理即可求BC的長度,根據(jù)B1C=B1B+BC即可求得B1C的長度,在直角三角形A1B1C中,已知A1B1=AB,B1C,即可求得A1C的長度,根據(jù)AA1=AC﹣A1C即可求得A1A的長度. 【解答】解:根據(jù)題意,在Rt△ABC中,AB=2.5,AC=2.4, 由勾股定理得: BC==0.

62、7, ∵BB1=0.8, ∴B1C=B1B+BC=1.5. ∵在Rt△A1B1C中,A1B1=2.5,B1C=1.5, ∴A1C==2, ∴A1A=2.4﹣2=0.4. 答:那么梯子頂端沿墻下滑的距離為0.4米.   24.已知一次函數(shù)y1=kx+b與函數(shù)y=﹣2x的圖象平行,且與x軸的交點A的橫坐標(biāo)為2. (1)求一次函數(shù)y1=kx+b的表達式; (2)在給定的網(wǎng)格中,畫出函數(shù)一次函數(shù)y2=x+1的圖象,并求出一次函數(shù)y1=kx+b與y=x+1圖象的交點坐標(biāo); (3)根據(jù)圖象直接寫出,當(dāng)x取何值時,y1>y2. 【考點】一次函數(shù)與一元一次不等式;一次函數(shù)與二元

63、一次方程(組). 【分析】(1)利用兩直線平行的問題得到k=﹣2,再把A點坐標(biāo)代入y=﹣2x+b中求出b即可; (2)利用描點法畫出直線y=x+1,然后通過解方程組得到一次函數(shù)y1=kx+b與y=x+1圖象的交點坐標(biāo); (3)觀察函數(shù)圖象,寫出直線y1=kx+b在直線y=x+1上方所對應(yīng)的自變量的范圍即可. 【解答】解:(1)∵一次函數(shù)y1=kx+b與y=﹣2x的圖象平行 且過A(2,0), ∴k=﹣2,2k+b=0, ∴b=4, ∴一次函數(shù)的表達式為y1=﹣2x+4; (2)如圖, 解方程組得, 所以一次函數(shù)y1=kx+b與y=x+1圖象的交點坐標(biāo)為(1,2); (

64、3)x<1.   25.如圖,△ABC是等邊三角形,點D、E分別是BC、CA延長線上的點,且CD=AE,DA的延長線交BE于點F. (1)求證:△ABE≌△CAD; (2)求∠BFD的度數(shù). 【考點】全等三角形的判定與性質(zhì);等邊三角形的性質(zhì). 【分析】(1)由△ABC是等邊三角形,得到∠BAC=∠ACB=60°,AC=AB,于是得到∠EAB=∠ACD=120°,即可得到結(jié)論; (2)由全等三角形的性質(zhì)得到∠E=∠D,由于∠D+∠CAD=∠ACB=60°,即可得到結(jié)論. 【解答】(1)證明:∵△ABC是等邊三角形, ∴∠BAC=∠ACB=60°,AC=AB, ∴∠EAB=

65、∠ACD=120°, 在△CAD和△ABE中, , ∴△ABE≌△CAD; (2)解:∵△ABE≌△CAD, ∴∠E=∠D, ∵∠D+∠CAD=∠ACB=60°, ∴∠AFB=∠E+∠EAF=∠D+∠CAD=60°.   26.某工廠每天生產(chǎn)A、B兩種款式的布制環(huán)保購物袋共4500個,已知A種購物袋成本2元/個,售價2.3元/個;B種購物袋成本3元/個,售價3.5元/個.設(shè)每天生產(chǎn)A種購物袋x個,該工廠每天共需成本y元,共獲利w元. (1)求出y與x的函數(shù)表達式; (2)求出w與x的函數(shù)表達式; (3)如果該廠每天最多投入成本10000元,那么每天最多獲利多少元?

66、 【考點】一次函數(shù)的應(yīng)用. 【分析】(1)根據(jù)總成本y=A種購物袋x個的成本+B種購物袋x個的成本即可得到答案. (2)根據(jù)總利潤w=A種購物袋x個的利潤+B種購物袋x個的利潤即可得到答案. (3)列出不等式,根據(jù)函數(shù)的增減性解決. 【解答】解:(1)根據(jù)題意得: y=2x+3 y=﹣x+13500 (2)根據(jù)題意得: w=(2.3﹣2)x+(3.5﹣3) w=﹣0.2x+2250 (3)根據(jù)題意得:﹣x+13500≤10000 解得x≥3500元, ∵k=﹣0.2<0, ∴y隨x增大而減小, ∴當(dāng)x=3500時,y=﹣0.2×3500+2250=1550, 答:該廠每天至多獲利1550元.   27.為促進節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實行居民生活用電階梯電價方案,圖中的折線反映了每戶居民每月用電電費

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!