高考數(shù)學(xué)大一輪復(fù)習(xí) 高考專題突破四 高考中的立體幾何問題課件 文 蘇教版
《高考數(shù)學(xué)大一輪復(fù)習(xí) 高考專題突破四 高考中的立體幾何問題課件 文 蘇教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大一輪復(fù)習(xí) 高考專題突破四 高考中的立體幾何問題課件 文 蘇教版(69頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、高考專題突破四高考中的立體幾何問題考點(diǎn)自測(cè)課時(shí)作業(yè)題型分類深度剖析內(nèi)容索引考點(diǎn)自測(cè)考點(diǎn)自測(cè)1.正三棱柱ABCA1B1C1中,D為BC中點(diǎn),E為A1C1中點(diǎn),則DE與平面A1B1BA的位置關(guān)系為_.答案解析如圖取B1C1的中點(diǎn)為F,連結(jié)EF,DF,DE,則EFA1B1,DFB1B,平面EFD平面A1B1BA,DE平面A1B1BA.平行2.設(shè)x、y、z是空間不同的直線或平面,對(duì)下列四種情形:x、y、z均為直線;x、y是直線,z是平面;z是直線,x、y是平面;x、y、z均為平面.其中使“xz且yzxy”為真命題的是_.答案解析由正方體模型可知為假命題;由線面垂直的性質(zhì)定理可知為真命題.3.(2016
2、無錫模擬)如圖,在棱長(zhǎng)為6的正方體ABCDA1B1C1D1中,E,F(xiàn)分別在C1D1與C1B1上,且C1E4,C1F3,連結(jié)EF,F(xiàn)B,DE,BD,則幾何體EFC1DBC的體積為_.答案解析66如圖,連結(jié)DF,DC1,那么幾何體EFC1DBC被分割成三棱錐DEFC1及四棱錐DCBFC1,那么幾何體EFC1DBC的體積為V 346 (36)66125466.故所求幾何體EFC1DBC的體積為66.4.如圖,在四棱錐VABCD中,底面ABCD為正方形,E、F分別為側(cè)棱VC、VB上的點(diǎn),且滿足VC3EC,AF平面BDE,則 _.答案解析2連結(jié)AC交BD于點(diǎn)O,連結(jié)EO,取VE的中點(diǎn)M,連結(jié)AM,MF,
3、VC3EC,VMMEEC,又AOCO,AMEO,又EO平面BDE,AM平面BDE,又AF平面BDE,AMAFA,平面AMF平面BDE,又MF平面AMF,MF平面BDE,又MF平面VBC,平面VBC平面BDEBE,MFBE,VFFB, 2.5.如圖,在三棱錐PABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn).若PAAC,PA6,BC8,DF5.則直線PA與平面DEF的位置關(guān)系是_;平面BDE與平面ABC的位置關(guān)系是_.(填“平行”或“垂直”)答案解析平行垂直因?yàn)镈,E分別為棱PC,AC的中點(diǎn),所以DEPA.又因?yàn)镻A 平面DEF,DE平面DEF,所以直線PA平面DEF.因?yàn)镈,E,F(xiàn)分別為棱P
4、C,AC,AB的中點(diǎn),PA6,BC8,所以DEPA,DE PA3,EF BC4.又因?yàn)镈F5,故DF2DE2EF2,又PAAC,DEPA,所以DEAC.因?yàn)锳CEFE,AC平面ABC,EF平面ABC,所以DE平面ABC,又DE平面BDE,所以DEF90,即DEEF.所以平面BDE平面ABC.題型分類題型分類深度剖析深度剖析題型一求空間幾何體的表面積與體積題型一求空間幾何體的表面積與體積例例1(2016全國甲卷)如圖,菱形ABCD的對(duì)角線AC與BD交于點(diǎn)O,點(diǎn)E,F(xiàn)分別在AD,CD上,AECF,EF交BD于點(diǎn)H,將DEF沿EF折到DEF的位置.(1)證明:ACHD;證明由已知得ACBD,ADCD
5、,又由AECF得 ,故ACEF,由此得EFHD,折后EF與HD保持垂直關(guān)系,即EFHD,所以ACHD.(2)若AB5,AC6,AE ,OD ,求五棱錐D-ABCFE的體積.解答由EFAC得 .由AB5,AC6得DOBO 4,所以O(shè)H1,DHDH3,于是OD2OH2( )2129DH2,由(1)知ACHD,又ACBD,BDHDH,所以AC平面DHD,于是ACOD,又由ODOH,ACOHO,所以O(shè)D平面ABC.故ODOH.又由 得EF .五邊形ABCFE的面積所以五棱錐D-ABCFE的體積(1)若所給定的幾何體是柱體、錐體或臺(tái)體等規(guī)則幾何體,則可直接利用公式進(jìn)行求解.其中,等積轉(zhuǎn)換法多用來求三棱錐
6、的體積.(2)若所給定的幾何體是不規(guī)則幾何體,則將不規(guī)則的幾何體通過分割或補(bǔ)形轉(zhuǎn)化為規(guī)則幾何體,再利用公式求解.(3)若以三視圖的形式給出幾何體,則應(yīng)先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解.思維升華跟蹤訓(xùn)練跟蹤訓(xùn)練1正三棱錐的高為1,底面邊長(zhǎng)為 ,內(nèi)有一個(gè)球與它的四個(gè)面都相切(如圖).求:(1)這個(gè)正三棱錐的表面積;解答底面正三角形中心到一邊的距離為則正棱錐側(cè)面的斜高為(2)這個(gè)正三棱錐內(nèi)切球的表面積與體積.解答設(shè)正三棱錐PABC的內(nèi)切球的球心為O,連結(jié)OP,OA,OB,OC,而O點(diǎn)到三棱錐的四個(gè)面的距離都為球的半徑r.VPABCVOP ABVOPBCVOP ACVOABCS內(nèi)切球4
7、( 2)2(4016 ).題型二空間點(diǎn)、線、面的位置關(guān)系題型二空間點(diǎn)、線、面的位置關(guān)系例例2(2016揚(yáng)州模擬)如圖,在三棱柱ABCA1B1C1中,側(cè)棱垂直于底面,ABBC,AA1AC2,BC1,E,F(xiàn)分別是A1C1,BC的中點(diǎn).(1)求證:平面ABE平面B1BCC1;證明在三棱柱ABCA1B1C1中,BB1底面ABC.因?yàn)锳B平面ABC,所以BB1AB.又因?yàn)锳BBC,BCBB1B,所以AB平面B1BCC1.又AB平面ABE,所以平面ABE平面B1BCC1.(2)求證:C1F平面ABE;證明方法一如圖1,取AB中點(diǎn)G,連結(jié)EG,F(xiàn)G.因?yàn)镋,F(xiàn)分別是A1C1,BC的中點(diǎn),所以FGAC,且FG
8、 AC.因?yàn)锳CA1C1,且ACA1C1,所以FGEC1,且FGEC1,所以四邊形FGEC1為平行四邊形,所以C1FEG.又因?yàn)镋G平面ABE,C1F 平面ABE,所以C1F平面ABE.方法二如圖2,取AC的中點(diǎn)H,連結(jié)C1H,F(xiàn)H.因?yàn)镠,F(xiàn)分別是AC,BC的中點(diǎn),所以HFAB,又因?yàn)镋,H分別是A1C1,AC的中點(diǎn),所以EC1綊AH,所以四邊形EAHC1為平行四邊形,所以C1HAE,又C1HHFH,AEABA,所以平面ABE平面C1HF,又C1F平面C1HF,所以C1F平面ABE.(3)求三棱錐EABC的體積.解答因?yàn)锳A1AC2,BC1,ABBC,所以AB所以三棱錐EABC的體積(1)證
9、明面面垂直,將“面面垂直”問題轉(zhuǎn)化為“線面垂直”問題,再將“線面垂直”問題轉(zhuǎn)化為“線線垂直”問題.證明C1F平面ABE:()利用判定定理,關(guān)鍵是在平面ABE中找(作)出直線EG,且滿足C1FEG.()利用面面平行的性質(zhì)定理證明線面平行,則先要確定一個(gè)平面C1HF滿足面面平行,實(shí)施線面平行與面面平行的轉(zhuǎn)化.(2)計(jì)算幾何體的體積時(shí),能直接用公式時(shí),關(guān)鍵是確定幾何體的高,不能直接用公式時(shí),注意進(jìn)行體積的轉(zhuǎn)化.思維升華跟蹤訓(xùn)練跟蹤訓(xùn)練2(2016南京模擬)如圖,在三棱錐SABC中,平面SAB平面SBC,ABBC,ASAB.過A作AFSB,垂足為F,點(diǎn)E,G分別是棱SA,SC的中點(diǎn).求證:(1)平面E
10、FG平面ABC;證明由ASAB,AFSB知F為SB中點(diǎn),則EFAB,F(xiàn)GBC,又EFFGF,ABBCB,因此平面EFG平面ABC.(2)BCSA.證明由平面SAB平面SBC,平面SAB平面SBCSB,AF平面SAB,AFSB,所以AF平面SBC,則AFBC.又BCAB,AFABA,則BC平面SAB,又SA平面SAB,因此BCSA.題型三平面圖形的翻折問題題型三平面圖形的翻折問題例例3(2015陜西)如圖1,在直角梯形 ABCD中,ADBC,BAD ,ABBC ADa,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將ABE沿BE折起到圖2中A1BE的位置,得到四棱錐A1-BCDE.(1)證明:CD平面A
11、1OC;證明在題圖1中,連結(jié)EC,因?yàn)锳BBC ADa,BAD ,ADBC,E為AD中點(diǎn),所以BC綊ED,BC綊AE,所以四邊形BCDE為平行四邊形,故有CDBE,所以四邊形ABCE為正方形,所以BEAC,即在題圖2中,BEA1O,BEOC,且A1OOCO,從而BE平面A1OC,又CDBE,所以CD平面A1OC.(2)當(dāng)平面A1BE平面BCDE時(shí),四棱錐A1-BCDE的體積為 ,求a的值.解答由已知,平面A1BE平面BCDE,且平面A1BE平面BCDEBE,又由(1)知,A1OBE,所以A1O平面BCDE,即A1O是四棱錐A1BCDE的高,由題圖1知,平行四邊形BCDE的面積SBCABa2,從
12、而四棱錐A1-BCDE的體積為平面圖形的翻折問題,關(guān)鍵是搞清翻折前后圖形中線面位置關(guān)系和度量關(guān)系的變化情況.一般地,翻折后還在同一個(gè)平面上的性質(zhì)不發(fā)生變化,不在同一個(gè)平面上的性質(zhì)發(fā)生變化.思維升華跟蹤訓(xùn)練跟蹤訓(xùn)練3(2016蘇州模擬)如圖(1),四邊形ABCD為矩形,PD平面ABCD,AB1,BCPC2,作如圖(2)折疊,折痕EFDC.其中點(diǎn)E,F(xiàn)分別在線段PD,PC上,沿EF折疊后,點(diǎn)P疊在線段AD上的點(diǎn)記為M,并且MFCF.(1)證明:CF平面MDF;證明幾何畫板展示幾何畫板展示因?yàn)镻D平面ABCD,AD平面ABCD,所以PDAD.又因?yàn)锳BCD是矩形,CDAD,PD與CD交于點(diǎn)D,所以A
13、D平面PCD.又CF平面PCD,所以ADCF,即MDCF.又MFCF,MDMFM,所以CF平面MDF.(2)求三棱錐MCDE的體積.解答因?yàn)镻DDC,PC2,CD1,PCD60,所以PD ,由(1)知FDCF,在直角三角形DCF中,CF CD .如圖,過點(diǎn)F作FGCD交CD于點(diǎn)G,得FGFCsin 60所以DEFG ,故MEPE所以MD題型四立體幾何中的存在性問題題型四立體幾何中的存在性問題例例4如圖,在長(zhǎng)方體ABCDA1B1C1D1中,平面BMD1N與棱CC1,AA1分別交于點(diǎn)M,N,且M,N均為中點(diǎn).(1)求證:AC平面BMD1N.證明連結(jié)MN.因?yàn)镸,N分別為CC1,AA1的中點(diǎn),所以A
14、N AA1,CM CC1.又因?yàn)锳A1CC1,且AA1CC1,所以ANCM,且ANCM,所以四邊形ACMN為平行四邊形,所以ACMN.因?yàn)镸N平面BMD1N,AC 平面BMD1N,所以AC平面BMD1N.(2)若ADCD2,DD1 ,O為AC的中點(diǎn).BD1上是否存在動(dòng)點(diǎn)F,使得OF平面BMD1N?若存在,求出點(diǎn)F的位置,并加以證明;若不存在,請(qǐng)說明理由.解答當(dāng)點(diǎn)F滿足D1F3BF時(shí),OF平面BMD1N,證明如下:連結(jié)BD,則BD經(jīng)過點(diǎn)O,取BD1的中點(diǎn)G,連結(jié)OF,DG,又D1F3BF,所以O(shè)F為三角形BDG的中位線,所以O(shè)FDG.因?yàn)锽D DD1,且G為BD1的中點(diǎn),所以BD1DG,所以BD
15、1OF.因?yàn)榈酌鍭BCD為正方形,所以ACBD.又DD1底面ABCD,所以ACDD1,又BDDD1D,所以AC平面BDD1,又OF平面BDD1,所以ACOF.由(1)知ACMN,所以MNOF.又MN,BD1是平面四邊形BMD1N的對(duì)角線,所以它們必相交,所以O(shè)F平面BMD1N.對(duì)于線面關(guān)系中的存在性問題,首先假設(shè)存在,然后在這假設(shè)條件下,利用線面關(guān)系的相關(guān)定理、性質(zhì)進(jìn)行推理論證,尋找假設(shè)滿足的條件,若滿足則肯定假設(shè),若得出矛盾的結(jié)論則否定假設(shè).思維升華跟蹤訓(xùn)練跟蹤訓(xùn)練4(2016鎮(zhèn)江模擬)如圖,在直四棱柱ABCDA1B1C1D1中,已知DCDD12AD2AB,ADDC,ABDC.(1)求證:D
16、1CAC1;證明在直四棱柱ABCDA1B1C1D1中,連結(jié)C1D,DCDD1,四邊形DCC1D1是正方形,DC1D1C.又ADDC,ADDD1,DCDD1D,AD平面DCC1D1,又D1C平面DCC1D1,ADD1C.AD平面ADC1,DC1平面ADC1,且ADDC1D,D1C平面ADC1,又AC1平面ADC1,D1CAC1.(2)問在棱CD上是否存在點(diǎn)E,使D1E平面A1BD.若存在,確定點(diǎn)E位置;若不存在,說明理由.解答假設(shè)存在點(diǎn)E,使D1E平面A1BD.連結(jié)AD1,AE,D1E,設(shè)AD1A1DM,BDAEN,連結(jié)MN,平面AD1E平面A1BDMN,要使D1E平面A1BD,可使MND1E,
17、又M是AD1的中點(diǎn),則N是AE的中點(diǎn).又易知ABNEDN,ABDE.即E是DC的中點(diǎn).綜上所述,當(dāng)E是DC的中點(diǎn)時(shí),可使D1E平面A1BD.課時(shí)作業(yè)課時(shí)作業(yè)1.(2016連云港模擬)如圖所示,已知平面平面l,.A,B是直線l上的兩點(diǎn),C,D是平面內(nèi)的兩點(diǎn),且ADl,CBl,DA4,AB6,CB8.P是平面上的一動(dòng)點(diǎn),且有APDBPC,則四棱錐PABCD體積的最大值是_.答案解析123456789由題意知,PAD,PBC是直角三角形,又APDBPC,所以PADPBC.因?yàn)镈A4,CB8,所以PB2PA.作PMAB于點(diǎn)M,由題意知,PM.令A(yù)Mt(0t6),則PA2t24PA2(6t)2,所以PA
18、2124t.所以PM ,即為四棱錐PABCD的高,又底面ABCD為直角梯形,S (48)636.1234567892.(2016南京模擬)已知,是兩個(gè)不同的平面,l,m是兩條不同的直線,l,m.給出下列命題:lm;lm;ml;lm.其中正確的命題是_.(填寫所有正確命題的序號(hào))答案解析若l,則l,又m,則lm,故正確;若l,則l或l,又m,則l與m可能平行、相交或異面,故錯(cuò)誤;若l,m,則lm,又m,則l與可能平行、相交或l,故錯(cuò)誤;若l,l,則,又m,則m,故正確.綜上,正確的命題是.1234567893.(2016蘇州模擬)如圖,ABCDA1B1C1D1為正方體,連結(jié)BD,AC1,B1D1
19、,CD1,B1C,現(xiàn)有以下幾個(gè)結(jié)論:BD平面CB1D1;AC1平面CB1D1;CB1與BD為異面直線.其中所有正確結(jié)論的序號(hào)為_.由題意可知,BDB1D1,又B1D1平面CB1D1,BD 平面CB1D1,所以BD平面CB1D1,正確;易知AC1B1D1,AC1B1C,又B1D1B1CB1,所以AC1平面CB1D1,正確;由異面直線的定義可知正確.答案解析1234567894.(2016泰州二模)如圖,在梯形ABCD中,ADBC,ABC90,ADBCAB234,E、F分別是AB、CD的中點(diǎn),將四邊形ADFE沿直線EF進(jìn)行翻折,給出四個(gè)結(jié)論:DFBC;BDFC;平面DBF平面BFC;平面DCF平面
20、BFC.在翻折過程中,可能成立的結(jié)論是_.(填寫結(jié)論序號(hào))答案解析123456789因?yàn)锽CAD,AD與DF相交不垂直,所以BC與DF不垂直,則錯(cuò)誤;設(shè)點(diǎn)D在平面BCF上的射影為點(diǎn)P,當(dāng)BPCF時(shí)就有BDFC,而ADBCAB234,可使條件滿足,所以正確;當(dāng)點(diǎn)P落在BF上時(shí),DP平面BDF,從而平面BDF平面BCF,所以正確;因?yàn)辄c(diǎn)D的射影不可能在FC上,所以平面DCF平面BFC不成立,即錯(cuò)誤.故答案為.1234567895.如圖,在正方體ABCDA1B1C1D1中,點(diǎn)E是棱BC的中點(diǎn),點(diǎn)F是棱CD上的動(dòng)點(diǎn),當(dāng) _時(shí),D1E平面AB1F.答案解析1123456789如圖,連結(jié)A1B,則A1B是
21、D1E在平面ABB1A1內(nèi)的射影.AB1A1B,D1EAB1,又D1E平面AB1FD1EAF.連結(jié)DE,則DE是D1E在底面ABCD內(nèi)的射影,D1EAFDEAF.ABCD是正方形,E是BC的中點(diǎn),當(dāng)且僅當(dāng)F是CD的中點(diǎn)時(shí),DEAF,即當(dāng)點(diǎn)F是CD的中點(diǎn)時(shí),D1E平面AB1F, 1時(shí),D1E平面AB1F.1234567896.(2016連云港模擬)如圖,在直三棱柱ABCA1B1C1中,ABAC,ABAC,點(diǎn)E是BC上一點(diǎn),且平面BB1C1C平面AB1E.(1)求證:AEBC;證明123456789123456789過點(diǎn)B在平面BB1C1C內(nèi)作BFB1E,平面BB1C1C平面AB1E,平面BB1C
22、1C平面AB1EB1E,BF平面AB1E.AE平面AB1E,BFAE.又在直三棱柱ABCA1B1C1中,BB1平面ABC,AE平面ABC,BB1AE.BB1BFB,AE平面BB1C1C,BC平面BB1C1C,AEBC.(2)求證:A1C平面AB1E.證明123456789連結(jié)A1B,設(shè)A1BAB1G,連結(jié)GE,AEBC,ABAC,BECE,又A1GBG,GE是A1BC的中位線,GEA1C.GE平面AB1E,A1C 平面AB1E,A1C平面AB1E.1234567897.(2016南通、揚(yáng)州、泰州聯(lián)考)如圖,在四棱錐PABCD中,PC平面PAD,ABCD,CD2AB2BC,M,N分別是棱PA,C
23、D的中點(diǎn).(1)求證:PC平面BMN;證明123456789設(shè)ACBNO,連結(jié)MO,AN,因?yàn)锳B CD,ABCD,N為CD的中點(diǎn),所以ABCN,且ABCN,所以四邊形ABCN為平行四邊形,所以O(shè)為AC的中點(diǎn),又M為PA的中點(diǎn),所以MOPC.又因?yàn)镸O平面BMN,PC 平面BMN,所以PC平面BMN.123456789(2)求證:平面BMN平面PAC.證明123456789方法一因?yàn)镻C平面PDA,AD平面PDA,所以PCAD.由(1)同理可得,四邊形ABND為平行四邊形,所以ADBN,所以BNPC,因?yàn)锽CAB,所以平行四邊形ABCN為菱形,所以BNAC.因?yàn)镻CACC,所以BN平面PAC.
24、因?yàn)锽N平面BMN,所以平面BMN平面PAC.123456789方法二連結(jié)PN,因?yàn)镻C平面PDA,PA平面PDA,因?yàn)镻CMO,所以PAMO.又PCPD.因?yàn)镹為CD的中點(diǎn),所以PN CD,由(1)得ANBC CD,所以ANPN,又因?yàn)镸為PA的中點(diǎn),所以PAMN,因?yàn)镸NMOM,所以PA平面BMN.因?yàn)镻A平面PAC,所以平面PAC平面BMN.所以PCPA.1234567898.(2016北京東城區(qū)一模)如圖,在四棱錐PABCD中,PA平面ABCD,底面ABCD是菱形,點(diǎn)O是對(duì)角線AC與BD的交點(diǎn),AB2,BAD60,M是PD的中點(diǎn).(1)求證:OM平面PAB;證明123456789因?yàn)樵?/p>
25、PBD中,O,M分別是BD,PD的中點(diǎn),所以O(shè)MPB.又OM 平面PAB,PB平面PAB,所以O(shè)M平面PAB.(2)求證:平面PBD平面PAC.證明123456789因?yàn)榈酌鍭BCD是菱形,所以BDAC.因?yàn)镻A平面ABCD,BD平面ABCD,所以PABD.又ACPAA,所以BD平面PAC.又BD平面PBD,所以平面PBD平面PAC.(3)當(dāng)三棱錐CPBD的體積等于 時(shí),求PA的長(zhǎng).解答123456789因?yàn)榈酌鍭BCD是菱形,且AB2,BAD60,所以SBCD又VCPBDVPBCD,三棱錐PBCD的高為PA,9.(2016鹽城測(cè)試)如圖,已知三棱柱ABCABC中,平面BCCB底面ABC,BB
26、AC,底面ABC是邊長(zhǎng)為2的等邊三角形,AA3,E,F(xiàn)分別在棱AA,CC上,且AECF2.(1)求證:BB底面ABC;證明123456789如圖,取BC的中點(diǎn)O,連結(jié)AO,三角形ABC是等邊三角形,AOBC.平面BCCB底面ABC,AO平面ABC,平面BCCB平面ABCBC,AO平面BCCB.又BB平面BCCB,AOBB.又BBAC,AOACA,AO平面ABC,AC平面ABC,BB底面ABC.123456789(2)在棱AB上找一點(diǎn)M,使得CM平面BEF,并給出證明.解答123456789顯然點(diǎn)M不是點(diǎn)A,B,若棱AB上存在一點(diǎn)M,使得CM平面BEF,過點(diǎn)M作MNAA交BE于N,連結(jié)FN,MC,MNCF,即CM和FN共面,又平面MNFC平面BEFFN,CMFN,四邊形CMNF為平行四邊形,MN2,MN是梯形ABBE的中位線,M為AB的中點(diǎn).故當(dāng)M為AB的中點(diǎn)時(shí),CM平面BEF.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中語文作文素材:30篇文學(xué)名著開場(chǎng)白
- 初中語文答題技巧:現(xiàn)代文閱讀-說明文閱讀知識(shí)點(diǎn)總結(jié)
- 初中語文作文十大??荚掝}+素材
- 初中語文作文素材:描寫冬天的好詞、好句、好段總結(jié)
- 初中語文必考名著總結(jié)
- 初中語文作文常見主題總結(jié)
- 初中語文考試??济偨Y(jié)
- 初中語文必考50篇古詩文默寫
- 初中語文易錯(cuò)易混詞總結(jié)
- 初中語文228條文學(xué)常識(shí)
- 初中語文作文素材:30組可以用古詩詞當(dāng)作文標(biāo)題
- 初中語文古代文化常識(shí)七大類別總結(jié)
- 初中語文作文素材:100個(gè)文藝韻味小短句
- 初中語文閱讀理解33套答題公式
- 初中語文228條文學(xué)常識(shí)總結(jié)