核桃脫殼機(jī)設(shè)計(jì),核桃,脫殼,設(shè)計(jì)
核桃脫核機(jī)設(shè)計(jì)
學(xué)生:汪 濤
指導(dǎo)老師:高英武
(湖南農(nóng)業(yè)大學(xué)東方科技學(xué)院,長沙,410128)
摘 要:本文首先提出核桃機(jī)械剝核取仁的必要性和重要性。提出了雙齒盤一齒板式剝核原理及最優(yōu)設(shè)計(jì)參數(shù),并研制了核桃脫殼機(jī)。其中主要包括總體方案的確定,各部件的設(shè)計(jì)與計(jì)算,總裝與零部件裝圖紙;完成設(shè)計(jì)后,分析了它的特點(diǎn)、優(yōu)勢,以及存在的不足,需要改進(jìn),提出了一些改進(jìn)措施。
關(guān)鍵詞:核桃;機(jī)械;剝核
Design Of Decorticator For Walnut
Student:Wang Tao
Tutor:Gao Yingwu
(Oriental Science &Technology College of Hunan Agricultural University, Changsha 410128)
Abstract:It’s necessary to crack walnut by machine. Cracking principle was put forward. The cracking machine and its optimal parameters were designed, which included the Determining totality scheme, the design and calculation of every components.Total assembling and every components’drawing. After complete the design, analyze the feature, superiority and some defects. Aiming at this defect and raise some improvemeng steps.
Keywords: walnut;machine;craking
1 前言
核桃,是人們常見的食物。它營養(yǎng)豐富,具有健腦、補(bǔ)腎、美容、降血脂四大功效。核桃和核桃仁還是我國傳統(tǒng)的出口商品。
但是,由于核桃殼堅(jiān)硬,手工剝核極其不便而且費(fèi)時(shí)費(fèi)力。因此,提高核桃取仁的機(jī)械化程度,是生產(chǎn)過程中急需解決的問題。
鑒于此,本設(shè)計(jì)根據(jù)以往的研究與資料,提出了雙齒盤——齒板式剝核原理以及最優(yōu)設(shè)計(jì)參數(shù),并研制了核桃脫殼機(jī)。本機(jī)能完美的解決核桃難剝核和人工剝核不能保證仁的完全性難題,且又有較高的生產(chǎn)率和較高的高路仁率。
本次設(shè)計(jì)采用常見的電機(jī)作動力源,利用V帶減速和傳遞功率。利用軸旋轉(zhuǎn)帶動齒盤的轉(zhuǎn)動,齒弧板固定,從而機(jī)器能夠連續(xù)的工作,大大提高了生產(chǎn)率。
2 設(shè)計(jì)的目的、意義、國內(nèi)外動態(tài)
核桃,在我國有兩千多年栽培歷史,并逐漸由我國西部擴(kuò)展到黃河流域。目前,全國核桃產(chǎn)量10萬多噸,其中山西、陜西、云南和河北四省年產(chǎn)量均在萬噸以上。核桃和核桃仁是我國傳統(tǒng)的出口商品,外貿(mào)部門根據(jù)核桃仁的完整程度將其分為一路仁、二路仁和碎仁。一路仁是指半仁及大半仁,二路仁是指四分仁以及比1/4大的三角仁,比1/4還小的仁稱為碎仁。二路仁與二路之和統(tǒng)稱為高路仁。高路仁重與仁總重的比值稱為高路仁率,這是評價(jià)核桃脫核機(jī)的一個(gè)重要指標(biāo),另一個(gè)指標(biāo)是:
剝核率=(核桃總量—含仁的核重)/核桃總重
核桃的總類:
核桃劃分為四個(gè)品種群,(如表1)
表1 核桃品種群
Table 1 Walnut Cultivar Group
品種群 核桃殼厚度 含仁率(%) 橫膈膜 內(nèi)褶壁 取出仁
(mm)
紙皮核桃 <0.9 >65 退化 退化 全仁
薄殼核桃 1~1.5 50~64 呈膜質(zhì) 退化 半仁
中殼核桃 1.6~2.0 41~49 呈革質(zhì) 不發(fā)達(dá) 1/4仁
后殼核桃 >2.1 <41 呈骨質(zhì) 發(fā)達(dá) 碎仁
注:1.橫隔膜是指分隔開兩半仁的十字架式的薄膜
2.內(nèi)褶壁是指凹凸不平的內(nèi)壁
因此,此種核桃脫核機(jī)所剝核的對象是指核桃殼厚度小于2mm,橫膈膜退化或呈膜質(zhì)、革質(zhì),內(nèi)褶壁退化或不發(fā)達(dá),較易于用機(jī)械剝殼取仁,包括紙皮、薄殼和中殼核桃品種群。目前,此種核桃占全部核桃的85%~90%,隨著無性繁殖的推廣和品種的進(jìn)一步改良,夾核桃將逐漸被淘汰。故本文著重研究品種純度較高的云南漾濞縣產(chǎn)的薄殼核桃作為本機(jī)械研究對象。
3 核桃脫殼機(jī)的總體方案的確定
3.1 三種擠壓破裂方法的比較
擠壓破裂核桃基本上有以下三種方式(如圖1)
圖1 三種破裂方式
Figure1 Three rupture mode
3.1.1 核桃的旋轉(zhuǎn)角度
采用第一種方式,核桃在圓盤之間沒有旋轉(zhuǎn),故旋轉(zhuǎn)角β=0。采用第二、第三種方式,核桃則繞接觸點(diǎn)D2(D3)旋轉(zhuǎn),由于核桃表面粗糙,可認(rèn)為向下無滑移,運(yùn)動過程簡化為繞瞬心D2(D3)點(diǎn)作向下純滾動,可分解為繞質(zhì)心(圓心)的勻速轉(zhuǎn)動和質(zhì)心的勻速平動。
勻速轉(zhuǎn)動的角速度ω=(v/2)/(d/2)=v/d,式中v為圓盤線速度。
當(dāng)核桃開始受擠壓時(shí),旋轉(zhuǎn)的圓盤帶動核桃邊轉(zhuǎn)動邊向下平動。當(dāng)圓盤轉(zhuǎn)過α角時(shí),核桃向下平動的圓弧長度l:
l=α(r+d2) (3-1)
所用時(shí)間t:
t=l/(v2)=2α(r+d2)/v (3-2)
核桃旋轉(zhuǎn)角:
β=ωt=(2rd+1) α (3-3)
當(dāng)r,d一定時(shí),β與α成正比關(guān)系。比較第二、第三種方式,擠入角α3>α2,則β3>β2。因此,第三種方式最有利于殼的全面破裂。
3.1.2 核桃的壓縮變形曲線
根據(jù)幾何尺寸關(guān)系,運(yùn)用三角形的余弦定理核正弦定理,就可以求出這三種方案的壓縮變形量δ(α)與圓盤轉(zhuǎn)角α的關(guān)系式,簡稱壓縮變形曲線。δm是指最大壓縮變形量。
對于第一種方式:
cosα1=2r+s2r+d
δ(α)=C1D1-C1D1’=2r[cos(α1-α)- cosα1]
δm=2r(1- cosα1)
對于第二種方式:
cosα2=2r+2s-d2r+d
δ(α)=d22(1+cosα2) - A2(1+cos?(α2-α))
其中A=r1-cosα2-α+s1+cos?(α2-α)
δm=d22(1+cosα2) –S
對于第三種方式:
cosα3=(R-d2)2-(r+d2)2-e22e(r+d2)
sink3=eR-d2sinα3
δ(α)=d22(1+cosk3)-B2(1+cosk)
其中 B=R2-e2-r2-2er cos?(α3-α)2[R+r+ecos(α3-α)] (3-4)
Sink=eR-Bsinα3-α (3-5)
δm =d221+cosK3-S (3-6)
選取 r=100mm, d/2=10.4mm, S=19.1mm. R=180mm, 就可以繪制出三種方式下的壓縮變形曲線。(如圖2)
第三種曲線變化最平緩,斜率最小,這就意味著殼達(dá)到相同的變形量而出現(xiàn)初始裂紋時(shí),第三種方式下圓盤轉(zhuǎn)過的角度最大,因而核桃在出現(xiàn)裂紋這一過程中所轉(zhuǎn)過角度也是最大的。這就使得殼上受擠壓力作用而出現(xiàn)初始裂紋的區(qū)域最大,最有利于殼的全面破裂。
這三條曲線的最大變形量雖然非常接近,但第三條曲線的擠入角明顯大于第二條。這就使得曲線變化緩慢。在擠壓后期,擠壓變形量增加緩慢,避免對剝離出來的仁的擠壓破碎,提高取仁質(zhì)量。
圖2 三種擠壓方式的壓縮變形曲線
Figure2 Deformation mode of the three curves extruded
3.2 雙齒盤齒板式剝殼原理及最優(yōu)設(shè)計(jì)參數(shù)
3.2.1 剝殼原理
在前面分析基礎(chǔ)上,提出了雙齒盤一齒板式剝殼原理(如圖3)。當(dāng)核桃喂入到剝殼裝置中,齒盤的旋轉(zhuǎn)帶動核桃邊緣旋轉(zhuǎn)邊向里擠入,一定間距的齒尖不斷地沿著殼表面壓,使得裂紋不斷擴(kuò)展,部分殼和仁分離出來,最后殼基本上完全破裂,碎殼和仁通過最小間隙向下掉出來。
齒盤和弧齒板的斜面角度為45°,長度為8mm。在倒角面上分布著一定尺寸的小齒。隨著擠壓變形量的增加,殼表面變平甚至出現(xiàn)凹坑,則齒數(shù)由1個(gè)增加到2、3個(gè)甚至4、5個(gè)。這樣在接觸處產(chǎn)生的初始裂紋條數(shù)多又長,由于核桃的旋轉(zhuǎn)使整個(gè)圓周都產(chǎn)生裂紋,使殼完全均勻地破裂。
圖3 雙齒盤——齒板式剝殼原理
Figure3 Bidentate disk - Principles of tooth plate peeled
3.2.2 理想擠入角
理想的擠壓破裂過程要求核桃從擠壓開始到破裂結(jié)束轉(zhuǎn)過半圓,即β=180°,保證核桃在整個(gè)圓周上都產(chǎn)生裂紋,殼的破裂全面而均勻。那么,理想擠入角α3為:
α3=180°200d+1+3°
假定齒盤直徑200mm,考慮到核桃在擠壓過程中的速度要發(fā)生變化,取修正角為3°,d為簡化的核桃直徑,即相應(yīng)兩接觸間的實(shí)際距離,d與橫徑均值D的關(guān)系為:
d=Dsin45°-4
r’=d2=D2sin45°-2
每一尺寸等級核桃的r’和α3(如表2)
表2 每一尺寸等級核桃r’和α3
Table 2 Each size grade walnut r’and α3
橫徑范圍 30~32 32~34 34~36 36~38 38~40
(mm)
橫徑均值D 31 33 35 37 39
(mm)
簡化圓的
半徑r’(mm) 9.0 9.7 10.4 11.1 11.8
理想的擠入
角α3(度 ) 17.8 18.9 19.9 21.0 22.0
3.3 偏心圓弧板最佳半徑的確定
為了保證在擠壓破裂過程中對仁不造成破碎,應(yīng)使最大壓縮變形量小于不使仁壓碎的最大擠壓變形量,即δm≤1.6~2.5mm,當(dāng)給定
α3、r、r’時(shí),不同的R將產(chǎn)生不同的δm和最小間隙s(理論調(diào)節(jié)值)。計(jì)算公式如下:
e sink3=R-r'sinα3=r+r'sinθ (3-7)
故:
S=R-r-R-r'sinα3*sinK3
δm=r’2(1+cosK3)-S
將核桃分為5個(gè)尺寸等級,即有5組r’和 α3,繪出每組δm—R曲線,δm隨R增大近似成線性增加。當(dāng)R為較小值時(shí),δm也較小,不足以使殼完全破裂。當(dāng)R為較大值時(shí),才能獲得較好的剝核取仁性能。對每一組δm—R曲線加以比較,發(fā)現(xiàn)當(dāng)D增大時(shí)δm也增大,這就要求所選取的R值對每一尺寸等級的核桃都能獲得較好的剝核取仁性能。選取R=180mm, δm的變化范圍為1.8~2.7mm。數(shù)值上比較接近不使仁壓碎的最大擠壓變形量。
3.4 主要組成部分特點(diǎn)
3.4.1 電動機(jī)
由于核桃脫核機(jī)的生產(chǎn)率為40kg/h,所以選擇功率小、轉(zhuǎn)速低、價(jià)格低、體積小的電動機(jī),該電動額定功率為0.75kw,同步轉(zhuǎn)速n=910r/min,即為Y90S-6型號。該電動機(jī)額定電壓380V,頻率50Hz。
3.4.2 皮帶傳動裝置
核桃脫核機(jī)選用V帶的傳動裝置,傳動比i=5
3.4.3 軸
軸的材料主要選擇45號鋼,軸的固定采用角接觸球軸承,采用軸肩定位。
4 傳動設(shè)計(jì)計(jì)算、零部件的強(qiáng)度剛度計(jì)算
4.1 傳動設(shè)計(jì)計(jì)算
4.1.1 電動機(jī)的參數(shù)
選用最常見的Y系列三相異步電動機(jī)(ZBK22007-88), 型號:Y90S-6,額定功率:0.75KW,滿載轉(zhuǎn)速:910r/min。
4.1.2 V帶輪的設(shè)計(jì)選擇計(jì)算
確定計(jì)算功率Pca
計(jì)算功率Pca是根據(jù)傳遞的功率P,并考慮到荷載性質(zhì)和每天運(yùn)轉(zhuǎn)時(shí)間長短等因素的影響而確定的。即
Pca=KAP (4-1)
式中:Pca-計(jì)算功率,單位為kw;
P-傳遞的額定功率,單位為kw;
KA-工作情況系數(shù),見表8-6
查表8-7,取KA=1.18,帶入公式得:
Pca=KAP=1.18*0.75=0.885kw
選擇帶型
根據(jù)計(jì)算功率Pca和小帶輪轉(zhuǎn)數(shù)n1有圖表8-8選定帶型選擇普通V帶Z型。
確定帶輪的基準(zhǔn)直徑dd1和dd2
初選小帶輪的基準(zhǔn)直徑dd1
根據(jù)V帶截型,參考表8-6及表8-8,選取dd1=63mm
驗(yàn)算帶的速度V
根據(jù)式(8-13)來計(jì)算的速度
V=πdp1n160×1000≈πdd1n160×1000
將dd1=63mm,n1=910rmin帶入式中,得:
V=πdp1n160×1000≈3.14×63×91060×100=3m/s
計(jì)算從動輪的基準(zhǔn)直徑dd2
確定中心距a和帶的基準(zhǔn)長度Ld
如果中心距未給出,可根據(jù)傳遞的結(jié)構(gòu)需要初定中心距a0,取
0.7dd1+dd2
120°
確定帶的根數(shù)Z
Z=pcap0+?p0KαKL (4-3)
式中:Kα— 考慮包角不同時(shí)的影響系數(shù),簡稱包角系數(shù),查表8-5;
KL — 考慮到長度不同時(shí)的影響系數(shù),簡稱長度系數(shù),查表8-2;
P0 — 單根V帶的基本額定功率,查表8-4a或8-4b;
△P0 — 記入傳動比時(shí)影響是,單根V帶額定功率的增量,其值見表8-4b或8-5d以上均查表的:Pca=0.885,P0=0.18,△P0=0.02,Kα=0.92,KL=1.16
Z=pca(p0+?p0 )KαKL=0.885(0.18+0.02)×0.92×1.16=4
取Z=4
確定帶的預(yù)緊力F0
由式(8-7),并考慮離心力的不利影響時(shí),單根V帶所需的預(yù)緊力為
F0=12Fecefvα+1efvα-1+qv2 (4-4)
將Fec=1000Pcazv 代入上式并考慮包角對所需預(yù)緊力的影響,可將F0的計(jì)算式寫為
F0=500Pca zv2.5Kα-1+qv2
將Pca=0.885kw,Z=4,V=3m/s,Kα=0.92,q=0.06kg/m
得:
F0=500Pca zv2.5Kα-1+qv2=500×0.8854×3×2.50.92-1+0.06×32=64N
計(jì)算帶傳動作用在軸上的力(簡稱壓力軸)Fp
為了設(shè)計(jì)安裝帶輪的軸和軸承,必須確定帶傳動作用在軸上的力Fp。如果不考慮帶的兩邊的拉力差,則壓軸力可以近似按帶的兩邊的預(yù)緊力F0的合力來計(jì)算(圖8-11),即
Fp=2ZF0cosβ2=2ZF0cos(π2-α12)=2ZF0sinα12
將Z=4,α1=150°,F(xiàn)0=64N代入上式,得:
Fp=2ZF0sinα12=2×4×sin150°2×64=494.5N
4.1.3 軸的設(shè)計(jì)計(jì)算
求軸上的功率P2、轉(zhuǎn)速n2和轉(zhuǎn)矩T2
若取每級傳動的效率為η=0.97,則
P2=Pη=0.75×0.97=0.7275kw
n2=n11i=910×15=182r/min
T2=9550000p2n2=9550000×0.7275182N·mm+3.8×104N·mm
初步確定軸的最小直徑
先按式(15-2)初步估算軸的最小直徑。選取軸的材料45鋼,調(diào)質(zhì)處理。根據(jù)表15-3,取A0=120,于是得:
dmin=A03p2e2=112×30.7275182≈20mm
軸的最小直徑顯然是安裝V帶以動輪出的直徑dⅠ-Ⅱ=35mm
軸的結(jié)構(gòu)設(shè)計(jì)
擬定軸上零件的裝配方案
本軸的裝配方案采用如圖3所示的裝配方案
圖4 軸的結(jié)構(gòu)與裝配
Figure4 Structure and assembly of the axis
初步選擇軸承。選用角接觸球軸承。參照工作要求并根據(jù)
dⅡ-Ⅲ=42mm,由軸承產(chǎn)品目錄中初步選取標(biāo)注精度級的角接觸軸承7209AC,其尺寸為d×D×B=45mm×85mm×19mm,估dⅢ-Ⅳ=dⅦ-Ⅷ=45mm。而lⅦ-Ⅷ=19mm右端滾動軸承采用軸肩進(jìn)行軸向定位。由手冊上查得7209AC型軸承的定位軸肩高度h=17mm,因此dⅣ-Ⅶ=52mm。
取安裝齒盤處的軸段Ⅳ-Ⅴ的直徑dⅥ-Ⅶ=52mm,右齒盤的左端左軸承之間采用套筒定位,右齒盤的右端與右軸承之間采用套筒定位。
已知齒盤的寬度為23mm,為了使套筒端面可靠地壓緊齒盤,此軸段應(yīng)略短于輪轂寬度,故取lⅣ-Ⅴ=20mm。兩個(gè)齒盤的中間采用軸肩定位,軸肩高度h>0.07d,取h=6mm,則軸環(huán)處的直徑dⅤ-Ⅳ=58mm。
軸環(huán)寬度b=12mm,則lⅤ-Ⅵ=12mm。
軸承端蓋的總寬度為20mm(由機(jī)械及軸承端蓋的結(jié)構(gòu)設(shè)計(jì)而定)。根據(jù)軸承端蓋的裝卸及便于對軸承添加潤滑的要求,取端面的外端面與從動輪右端間的距離l=30mm,故取lⅡ-Ⅲ=50mm.
取齒盤距箱體內(nèi)壁之距離a=16mm,考慮到箱體的鑄造誤差,在確定滾動軸承位置時(shí),應(yīng)距箱體內(nèi)壁一段距離S,取S=8,已知軸承寬度B=19mm,則
lⅢ-Ⅳ=47mm
lⅥ-Ⅶ=20mm
考慮到軸上的結(jié)構(gòu)要對稱,故到此全部確定軸的各段直徑和長度
dⅠ-Ⅱ=35mm lⅠ-Ⅱ=60mm
dⅡ-Ⅲ=42mm lⅡ-Ⅲ=50mm
dⅢ-Ⅳ=45mm lⅢ-Ⅳ=47mm
dⅣ-Ⅴ=52mm lⅣ-Ⅴ=20mm
dⅤ-Ⅵ=58mm lⅤ-Ⅵ=12mm
dⅥ-Ⅶ=52mm lⅥ-Ⅶ=20mm
dⅦ-Ⅷ=45mm lⅦ-Ⅷ=47mm
軸上零件的周向定位
齒盤從動輪與軸的周向定位均采用平鍵聯(lián)接。按dⅣ-Ⅴ由手冊查得平鍵截面b×h=16mm×10mm(GB/T1095-1979),鍵槽用鍵槽銑刀加工,長為mm(標(biāo)注鍵長見GB/T1096-1979),同時(shí)為了保證齒盤與軸配合有良好的對中性,故選擇齒盤與軸的配合為H7/n6;同樣,從動輪與軸的聯(lián)接,選用平鍵為10mm×8mm×36mm,從動輪與軸的配合H7/k6。軸承與軸的周向定位是借過渡配合來保證的,此處選軸的直徑尺寸公差為m6。
確定軸上圓角和倒角尺寸
參考表15-2,取軸端倒角為2×45°,各軸肩處的圓角半徑見圖紙所示d。軸的潤滑采用涂黃油的方式進(jìn)行。
4.2 零件的強(qiáng)度剛度計(jì)算
求軸上的載荷
首先根據(jù)軸的結(jié)構(gòu)圖作出軸的計(jì)算簡圖。在確定軸承的支點(diǎn)位置時(shí),應(yīng)從手冊中查取a值。對于7209AC型角接觸球軸承,由手冊中查得a=25.4mm。因此,作為簡支梁的軸的支承跨距L2+L3=69.5mm+57.5mm=127mm根據(jù)軸的計(jì)算簡圖作出軸的彎矩圖和扭矩圖。(如圖5)
從軸的結(jié)構(gòu)圖以及彎矩和扭矩圖中可以看出截面C是軸的危險(xiǎn)截面。
現(xiàn)將計(jì)算出截面C處的MH、Mv及M的值(列表3)
圖5 軸的載荷分析圖
Figure5 Axis load analysis diagram
表3 截面C處的MH、Mv及M的值
Table 3 Section C at the MH, Mv and the value of M
載荷 水平面H 垂直面V
支反力F FNH1=2337N FNH2=1273N FNV1=1689N FNV2=-15N
彎矩M MH=36217N·mm MV1=32699N·mm Mv2=-440N·mm
總彎矩
M1=362172+326992=28794.4N·mm
M2=362172+4402=36219.6N·mm
扭矩 T=38000N·mm
按彎矩合成重力校核軸的強(qiáng)度
進(jìn)行校核是,通常只校核對軸上承受最大彎矩和扭矩的截面(即能是截面C)的強(qiáng)度,根據(jù)式(15-5)及上表中的數(shù)值,并去α=0.6,軸的計(jì)算重力
σca=M12+(2T)2w (4-5)
將,M1=48794.4N·mm,α=0.6,T=38000N·mm,W=0.1×522,代入公式,得:
σca=3.83Mpa
前已選定軸的材料為45鋼,調(diào)質(zhì)處理,由表15-1查得σ-1=60Mpa。因此σca<σ-1故安全。
4.2.1 精確校核軸的疲勞強(qiáng)度
判斷危險(xiǎn)截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用,雖然鍵槽、軸肩及過渡配合所引起的重力集中均將削弱軸的疲勞強(qiáng)度,但由于軸的最小直徑是按鈕強(qiáng)度較為寬裕的確定的,所以截面A,Ⅱ,Ⅲ,B均無需校核。
從應(yīng)力集中對軸的疲勞強(qiáng)度的影響來看,截面Ⅳ和Ⅴ處過盈配合引起的應(yīng)力集中最嚴(yán)重;從受截的情況來看,截面C上的重力最大。截面V的應(yīng)力集中的影響和截面Ⅳ的相近,但截面Ⅴ不受扭矩作用,同時(shí)軸徑也較大,故不必作強(qiáng)度校核。截面C上雖然應(yīng)力最大,但應(yīng)力集中不大(過盈配合及鍵槽引起的重力集中均在兩端),而且這里軸的直徑最大,故截面C也不必校核。截面Ⅵ和Ⅶ顯然更不必校核。由第三章附錄可知,鍵槽的重力集中系數(shù)比過盈配合的小,因而該軸只需要校核截面Ⅳ左右兩側(cè)即可。
截面Ⅳ左側(cè)
抗彎截面系數(shù) W=0.1d3=0.1×453mm3=9112.4mm3
抗扭截面系數(shù) WT=0.2d3=0.2×453mm3=18225mm3
截面Ⅵ左側(cè)的彎矩m為 M=48794.4×36.5-1036.5=35426N·mm
截面Ⅳ上的扭矩T為 T=38000N·mm
截面上的彎曲應(yīng)力 σ?=MW=3542638000=0.93Mpa
軸的材料為45鋼,調(diào)質(zhì)處理。由表15-1查得σB640Mpa ,σ-1=275Mpa , τ-1=155Mpa 。
截面上由于軸肩而形成的理論重力集中系數(shù)ασ及ατ按附表3-2查取。因rd=2.045=0.044,pd=5245=1.15,經(jīng)插值后可查得:
ασ=2.0 ατ=1.31
又由附圖3-1可得軸的材料的敏性系數(shù)為
qσ=0.82 qτ=0.85
故有效應(yīng)力集中系數(shù)按式(附3-4)為
kσ=1+qσαα-1=1+0.82×2.0-1=1.82
kτ=1+qτατ-1=1+0.85×1.31-1=1.26
由附圖3-2得尺寸系數(shù)εα=0.67,由附圖3-3得扭轉(zhuǎn)尺寸系數(shù)ετ=0.82軸按磨削加工,由附圖3-4得表面質(zhì)量系數(shù)為
βα=βc=0.92
軸半徑表面強(qiáng)化處理即βq=1,則按式(3-12)及(3-12a)得綜合系數(shù)值為
Kσ=Kσεσ+1βσ-1=1.820.67+10.92-1=2.80
Kτ=Kτετ+1βτ-1=1.260.82+10.92-1=1.62
又由§3-1及§3-2得碳鋼的特性系數(shù)
Ψσ=0.1~0.2 ,取Ψσ=0.1
Ψτ=0.05~0.1,取Ψτ=0.05
于是,計(jì)算安全系數(shù)Sca值,按式(15-6)~(15-8)則得
Sσ=σ-1Kσσα+Ψσσm=2752.80×0.93+0.1×0=105.6
Sτ=τ-1Ktτα+Ψτσm=1551.62×2.092+0.05×2.092=88.8
Sca=SσSτSσ2+Sτ2=105.6×88.8105.62+88.82=67.9?S=1.5
故可知其安全
截面Ⅳ右側(cè)
抗彎截面系數(shù)的W按表15-4中的公式計(jì)算
W=0.1d3=0.1×523mm3=14060.8mm3
抗扭截面系數(shù)WT為
W=0.2d3=0.2×523mm3=28121.6mm3
彎矩M及彎曲應(yīng)力為
M=48794.4×36.5-1036.5=35426N·mm
σb=Mw=3542614060.8=2.5Mpa
扭矩T及扭轉(zhuǎn)應(yīng)力為
T=38000N·mm τT=TWT=3800028121.6=1.35MPa
過盈配合處的Kσεσ值,由附表3-8用插入法求出,并取Kτετ,于是得
Kσεσ=3.16 Kτετ=0.8×3.16=2.53
軸按磨削加工,由附圖3-4得表面質(zhì)量系數(shù)為
βσ=βτ=0.92
故的綜合系數(shù)為
Kσ=Kσεσ+1βσ-1=3.16+10.92-1=3.25
Kτ=Kτετ+1βτ-1=2.53+10.92-1=2.62
所以軸在截面Ⅳ右側(cè)的安全系數(shù)為
Sσ=σ-1Kσσα+Ψσσm=2753.25×2.5+0.1×0=33.85
Sτ=τ-1Ktτα+Ψτσm=1552.62×1.352+0.05×1.352=86
Sca=SσSτSσ2+Sτ2=33.82×8633.852+862=31。5?S=1.5
故該軸在截面Ⅳ右側(cè)的強(qiáng)度也是足夠的。
至此,軸的校核結(jié)束。
4.2.2 軸承的校核
查軸承樣本可知,7209AC軸承的τ=23.8KN,τ0=22。5KN
求出軸承受到徑向載荷R1和R2
R1=FNV12+FNH12=23372+16892=2883.45N
R1=FNV22+FNH22=12732+152=1273.08N
求軸承的計(jì)算軸向力A1和A2
對于7209AC軸承按表13-7,軸承內(nèi)部附加軸向力Fα=eR,其中e為表13-5中的判斷系數(shù),其值由Aτ0的大小來確定,但現(xiàn)在軸承軸向力A未知,故設(shè)取e=0.40,因此可以估算:
Fd1=0.4R1=1153.38N
Fd2=0.4R2=509.22N
按式(13-11),得:
A1=Fa+Fd1=19.6+1153.38=1173.98N
A2=Fd1=153.38N
A1τ0=1172.9822500=0.052N A2τ0=1153.3822500=0.051N
由表13-5得,e1=e2=43,再計(jì)算
Fd1=e1R1=0.43×2883.45=1239.88N
Fd2=e2R2=0.43×1273.08=547.42N
A1=Fa+Fd2=19.6+547.42=567.02N
A2=547.42N
A1τ0=567.0222500=0.025N A2τ0=547.4222500=0.024N
兩次計(jì)算的Aτ0值相關(guān)不打,因此確定e1=e2=0.43。
所以 A1=567.02,A2=547.42
求兩軸承當(dāng)量動載荷P1和P2
因?yàn)?
A1R1=567.022883.45=0.196<0.43=e2
A2R2=547.421273.08=0.43=e2
由表13-5可查得徑向載荷系數(shù)和軸荷系數(shù)為
對軸承1 X1=1 Y1=0
對軸承2 X2=1 Y2=0
固軸承運(yùn)轉(zhuǎn)中有中等沖擊載荷,按表13-6,,fp=1.2~1.8,取fp=1.5,則:
P1=fpX1R1+Y1A2=1.5×1×2883.45+0×A2=4325.175N
P2=fpX2R2+Y2A2=1.5×1×1273.08+0×A2=1909.6N
最后求驗(yàn)算軸承的壽命
因?yàn)镻1>P2,所以按軸承1的受力大小驗(yàn)算;
L1=10660n(cP1)ε=10660×100(225004325.175)3=25463h
預(yù)期壽命8年
工作小時(shí)數(shù):Lh8×300×10=2400h
固有L1>Lh,可滿足壽命要求。
4.2.3 鍵的選擇
由于小皮帶輪與電機(jī)軸的聯(lián)接傳遞和扭矩小,而鍵又長,現(xiàn)校核大皮帶輪的平鍵:
由 T=12000Kτd[σ]p,差表得:K=2.2,[σ]p=110
則此鍵能傳遞的扭矩:
T=12000×2.2×110×35×103=42350N·mm>T=38000N·mm
故此鍵安全
附:
計(jì)算過程中所有表和公式來自《機(jī)械設(shè)計(jì)》第八版 濮良貴 紀(jì)名剛主編
5 結(jié)構(gòu)設(shè)計(jì)
5.1 機(jī)體的機(jī)構(gòu)設(shè)計(jì)
機(jī)體是箱蓋(如圖6)與箱體(如圖7)鑄造而成,材料為HT200,箱蓋是安裝主軸的,為了減少真?zhèn)€機(jī)體的重量,采用機(jī)座吧箱體支撐起來,再把箱蓋和箱體連成一體使得整體的結(jié)構(gòu)更簡單、合理、穩(wěn)定、減少了振動。機(jī)體的設(shè)計(jì)要緊密,以防止核桃不被擠壓。
機(jī)體的下面安裝電動機(jī),皮帶輪設(shè)置在機(jī)體外面,這樣方便調(diào)節(jié)皮帶的松緊,檢查皮帶輪的安裝是否到位。
圖6 箱蓋
Figure6 Cover
圖7箱體
Figure7 Box
5.2 入料斗的結(jié)構(gòu)設(shè)計(jì)
入料斗(如圖8)是保證進(jìn)料順利,起定料的作用,根據(jù)本機(jī)的整體特點(diǎn),入料斗設(shè)計(jì)成矩形和梯形相結(jié)合的形狀,且矩形的寬度為40mm,能保證剛好一個(gè)核桃進(jìn)入齒盤進(jìn)行剝殼。
圖8 入料斗
Figure8 Into the hopper
6 存在的問題及改進(jìn)措施
由于本機(jī)入料斗偏小,故存在頻繁加料的問題,給加工帶來麻煩。在出料斗的設(shè)計(jì)存在缺陷,剝殼出來之后,還要進(jìn)行人工選仁和殼的問題。
主要改進(jìn)措施:為了使全過程更趨于機(jī)械化,本人從原有基礎(chǔ)上再設(shè)計(jì)了一個(gè)振動分離裝置。 由于電機(jī)的轉(zhuǎn)速過高,而分離裝置轉(zhuǎn)速要求較小,故通過減速達(dá)到所需要求。減速簡圖(如圖9)
圖9 減速裝置簡圖
Figure9 Reduction gear diagram
利用核仁與壓碎的碎殼重力不同進(jìn)行分離。查表得出傳送帶的摩擦系數(shù)μ為0.3~0.5,取μ=0.4。
由力學(xué)知識,容易得出tanθ>0.4 。取θ=30°。即為傾斜角度。
采用曲軸(如圖10),從而達(dá)到振動的效果,傳送帶必需具有一定的彈性。滾筒間的固定采用固定板。帶傳動計(jì)算過程參照上面方法,滿足所需要求。
圖10 曲軸
Figure9 Crackaxis
7 結(jié)論
大致了解了機(jī)械設(shè)計(jì)的方法和程序,特別是怎么思考問題和解決問題,使得在今后的工作中遇到問題能迎刃而解。
所學(xué)的知識得到了一次較全面的鞏固,同時(shí)有感到品是學(xué)的不夠扎實(shí)。
通過這次設(shè)計(jì)又學(xué)到了很多以前沒接觸到的新知識,提高了自己的自學(xué)能力。
參考文獻(xiàn)
[1]鐘海雁等. 核桃生產(chǎn)加工利用研究的現(xiàn)狀與前景[J]. 食品與機(jī)械 , 2008,(04)
[2]吳子岳. 綿核桃剝殼機(jī)的研究設(shè)計(jì)[J]. 食品與機(jī)械 , 2007,(03)
[3]史建新,辛動軍等.國內(nèi)外核桃破殼取仁機(jī)械的現(xiàn)狀及問題探討[J]. 新疆農(nóng)機(jī)化 , 2008,(06)
[4]張林泉.剝殼機(jī)具的現(xiàn)狀及效果改進(jìn)方法的探討[J] .食品與機(jī)械.2008(4)
[5]史建新等. 6HP-150型核桃破殼機(jī)[J].糧油加工與食品機(jī)械 , 2009,(01)
[6]吳斌芳,張建鋼,周國柱,張業(yè)鵬. 綿核桃剝殼取仁機(jī)的研制[J].湖北工學(xué)院學(xué)報(bào) ,2005,(S1)
[7]辛動軍,史建新. 核桃剝殼機(jī)導(dǎo)向裝置試驗(yàn)研究[J]. 新疆農(nóng)業(yè)大學(xué)學(xué)報(bào) , 2008,(03)
[8]吳斌芳等. 綿核桃機(jī)械剝殼取仁參數(shù)選擇及實(shí)驗(yàn)分析[J]. 湖北工學(xué)院學(xué)報(bào) , 2007,(04)
[9]吳子岳. 綿核桃剝殼取仁機(jī)械的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào) , 2007,(04)
[10]王昆.何小柏.汪信遠(yuǎn)..機(jī)械設(shè)計(jì)課程設(shè)計(jì).[M].高等教育出版社,2008,(12)
[11]吳子岳. 核桃剝殼的力學(xué)分析[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào) , 2009,(03)
[12]張仲欣. 對輥窩眼式核桃開口機(jī)設(shè)計(jì)[J]. 洛陽工學(xué)院學(xué)報(bào) , 2007,(04)
[13]邱宣懷. 機(jī)械設(shè)計(jì). 4版. 北京: 高等教育出版社, 2007(04)
[14]王步瀛. 機(jī)械零件強(qiáng)度計(jì)算的理論和方法. 北京: 高等教育出版社, 2006(06)
[15]濮良貴.紀(jì)名剛. 機(jī)械設(shè)計(jì). 8版 北京: 高等教育出版社 2009(05)
致 謝
經(jīng)過近半學(xué)期的忙碌和工作,本次畢業(yè)設(shè)計(jì)已經(jīng)接近尾聲,作為一個(gè)本科生的畢業(yè)設(shè)計(jì),由于經(jīng)驗(yàn)的匱乏,難免有許多考慮不周全的地方,如果沒有導(dǎo)師的督促指導(dǎo),以及一起學(xué)習(xí)的同學(xué)們的支持,想要完成這個(gè)設(shè)計(jì)是難以想象的。在這里首先要感謝我的指導(dǎo)老師高英武教授。高老師平日里工作繁多,但在我做畢業(yè)設(shè)計(jì)的每個(gè)階段,從查閱資料到設(shè)計(jì)草案的確定和修改,中期檢查,后期詳細(xì)設(shè)計(jì),裝配草圖等整個(gè)過程中都給予了我悉心的指導(dǎo)。我的設(shè)計(jì)較為簡潔,但是高老師仍然細(xì)心地糾正設(shè)計(jì)內(nèi)容中的錯(cuò)誤。除了敬佩高老師的專業(yè)水平外,她的治學(xué)嚴(yán)謹(jǐn)和科學(xué)研究的精神也是我永遠(yuǎn)學(xué)習(xí)的榜樣,她的循循善誘的教導(dǎo)和不拘一格的思路也給予我無盡的啟迪。并將積極影響我今后的學(xué)習(xí)和工作。其次要感謝我的同學(xué)對我無私的幫助,特別是在非標(biāo)準(zhǔn)件尺寸確定方面,正因?yàn)槿绱宋也拍茼樌耐瓿稍O(shè)計(jì)。最后我要感謝我的母?!限r(nóng)業(yè)大學(xué),是母校給我們提供了優(yōu)良的學(xué)習(xí)環(huán)境;另外,我還要感謝那些曾給我授過課的每一位老師,是你們教會我專業(yè)知識。在此,我謝謝大家!
23