《人教版 高中數(shù)學(xué) 選修22 第二章 推理與證明綜合檢測》由會員分享,可在線閱讀,更多相關(guān)《人教版 高中數(shù)學(xué) 選修22 第二章 推理與證明綜合檢測(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2019人教版精品教學(xué)資料·高中選修數(shù)學(xué)
高中數(shù)學(xué) 第二章 推理與證明綜合檢測 新人教A版選修2-2
時間120分鐘,滿分150分。
一、選擇題(本大題共12個小題,每小題5分,共60分,在每小題給出的四個選項中只有一個是符合題目要求的)
1.觀察數(shù)列1,2,2,3,3,3,4,4,4,4,…的特點,按此規(guī)律,則第100項為( )
A.10 B.14
C.13 D.100
[答案] B
[解析] 設(shè)n∈N*,則數(shù)字n共有n個,
所以≤100即n(n+1)≤200,
又因為n∈N*,所以n=13,到第13個13時共有=91項,從第92項開始為14,故第100項為
2、14.
2.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說:“是乙或丙獲獎.”乙說:“甲、丙都未獲獎.”丙說:“我獲獎了.”丁說:“是乙獲獎.”四位歌手的話只有兩名是對的,則獲獎的歌手是( )
A.甲 B.乙
C.丙 D.丁
[答案] C
[解析] 若甲獲獎,則甲、乙、丙、丁說的都是錯的,同理可推知乙、丙、丁獲獎的情況,最后可知獲獎的歌手是丙.
3.(2015·棗莊一模)用數(shù)學(xué)歸納法證明“1+++…+1)”時,由n=k(k>1)不等式成立,推證n=k+1時,左邊應(yīng)增加的項數(shù)是( )
A.2k-1 B.2k-1
C.2k D.
3、2k+1
[答案] C
[解析] 左邊的特點是分母逐漸增加1,末項為;
由n=k時,末項為到n=k+1時末項為=,∴應(yīng)增加的項數(shù)為2k.
故選C.
[點評] 本題是基礎(chǔ)題,考查用數(shù)學(xué)歸納法證明問題的第二步,項數(shù)增加多少問題,注意表達式的形式特點,找出規(guī)律是關(guān)鍵.
4.下列說法正確的是( )
A.“a
4、析] A中“a0”,故B錯;
C正確;
D中p∧q為假命題,則p、q中至少有一個為假命題,故D錯.
5.(2014·東北三校模擬) 下列代數(shù)式(其中k∈N*)能被9整除的是( )
A.6+6·7k B.2+7k-1
C.2(2+7k+1) D.3(2+7k)
[答案] D
[解析] 特值法:當(dāng)k=1時,顯然只有3(2+7k)能被9整除,故選D.
證明如下:
當(dāng)k=1時,已驗證結(jié)論成立,
假設(shè)當(dāng)k=n(n∈N*)時,命題成立,即3(2+7n)能被9
5、整除,那么3(2+7n+1)=21(2+7n)-36.
∵3(2+7n)能被9整除,36能被9整除,
∴21(2+7n)-36能被9整除,
這就是說,k=n+1時命題也成立.
故命題對任何k∈N*都成立.
6.已知f(n)=+++…+,則( )
A.f(n)中共有n項,當(dāng)n=2時,f(2)=+
B.f(n)中共有n+1項,當(dāng)n=2時,f(2)=++
C.f(n)中共有n2-n項,當(dāng)n=2時,f(2)=+
D.f(n)中共有n2-n+1項,當(dāng)n=2時,f(2)=++
[答案] D
[解析] 項數(shù)為n2-(n-1)=n2-n+1,故應(yīng)選D.
7.已知a+b+c=0,則ab
6、+bc+ca的值( )
A.大于0 B.小于0
C.不小于0 D.不大于0
[答案] D
[解析] 解法1:∵a+b+c=0,
∴a2+b2+c2+2ab+2ac+2bc=0,
∴ab+ac+bc=-≤0.
解法2:令c=0,若b=0,則ab+bc+ac=0,否則a、b異號,∴ab+bc+ac=ab<0,排除A、B、C,選D.
8.已知c>1,a=-,b=-,則正確的結(jié)論是( )
A.a(chǎn)>b B.a(chǎn)<b
C.a(chǎn)=b D.a(chǎn)、b大小不定
[答案] B
[解析] a=-=,
b=-=,
因為>>0,>>0,
所以+>+>0,所以a
7、對于自然數(shù)n滿足以下運算性質(zhì):( )
(i)1]B.n+1
C.n-1 D.n2
[答案] A
[解析] 令an=n*1,則由(ii)得,an+1=an+1,由(i)得,a1=1,
∴{an}是首項a1=1,公差為1的等差數(shù)列,∴an=n,即n*1=n,故選A.
10.已知函數(shù)f(x)滿足f(0)=0,導(dǎo)函數(shù)f ′(x)的圖象如圖所示,則f(x)的圖象與x軸圍成的封閉圖形的面積為( )
A. B.
C.2 D.
[答案] B
[解析] 由f ′(x)的圖象知,f ′(x)=2x+2,
設(shè)f(x)=x2+2x+c,由f(0)=0知,c=0,∴f(x)=x2+2x,
由
8、x2+2x=0得x=0或-2.
故所求面積S=- (x2+2x)dx==.
11.已知1+2×3+3×32+4×32+…+n×3n-1=3n(na-b)+c對一切n∈N*都成立,那么a、b、c的值為( )
A.a(chǎn)=,b=c=
B.a(chǎn)=b=c=
C.a(chǎn)=0,b=c=
D.不存在這樣的a、b、c
[答案] A
[解析] 令n=1、2、3,得
所以a=,b=c=.
12.設(shè)函數(shù)f(x)定義如下表,數(shù)列{xn}滿足x0=5,且對任意的自然數(shù)均有xn+1=f(xn),則x2011=( )
x
1
2
3
4
5
f(x)
4
1
3
5
2
A.1
9、B.2
C.4 D.5
[答案] C
[解析] x1=f(x0)=f(5)=2,
x2=f(2)=1,x3=f(1)=4,x4=f(4)=5,x5=f(5)=2,…,數(shù)列{xn}是周期為4的數(shù)列,所以x2011=x3=4,故應(yīng)選C.
二、填空題(本大題共4個小題,每小題4分,共16分,把正確答案填在題中橫線上)
13.在△ABC中,D為邊BC的中點,則=(+).將上述命題類比到四面體中去,得到一個類比命題:
________________________________________________________________________.
[答案] 在四面體A-B
10、CD中,G為△BCD的重心,則=(++)
14.設(shè)函數(shù)f(x)=(x>0),觀察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,……根據(jù)以上事實,由歸納推理可得:當(dāng)n∈N*且n≥2時,fn(x)=f(fn-1(x))=________________.
[答案]
[解析] 觀察f1(x)、f2(x)、f3(x)、f4(x)的表達式可見,fn(x)的分子為x,分母中x的系數(shù)比常數(shù)項小1,常數(shù)項依次為2,4,8,16……2n.故fn(x)=.
15.(2014~2015·廈門六中高二期中)在平面上,我們用一直線去截
11、正方形的一個角,那么截下的一個直角三角形,按如圖所標(biāo)邊長,由勾股定理有c2=a2+b2.設(shè)想正方形換成正方體,把截線換成如圖截面,這時從正方體上截下三條側(cè)棱兩兩垂直的三棱錐O-LMN,如果用S1、S2、S3表示三個側(cè)面面積,S表示截面面積,那么類比得到的結(jié)論是________________.
[答案] S2=S+S+S
[解析] 類比如下:
正方形?正方體;
截下直角三角形?截下三側(cè)面兩兩垂直的三棱錐;直角三角形斜邊平方?三棱錐底面面積的平方;直角三角形兩直角邊平方和?三棱錐三個側(cè)面面積的平方和,結(jié)論S2=S+S+S.
證明如下:如圖,作OE⊥平面LMN,垂足為E,連接LE并延
12、長交MN于F,
∵LO⊥OM,LO⊥ON,∴LO⊥平面MON,
∵MN?平面MON,∴LO⊥MN,
∵OE⊥MN,∴MN⊥平面OFL,∴S△OMN=MN·OF,S△MNE=MN·FE,S△MNL=MN·LF,OF2=FE·FL,∴S=(MN·OF)2=(MN·FE)·(MN·FL)=S△MNE·S△MNL,同理S=S△MLE·S△MNL,S=S△NLE·S△MNL,∴S+S+S=(S△MNE+S△MLE+S△NLE)·S△MNL=S,即S+S+S=S2.
16.(2014~2015·洛陽部分重點中學(xué)質(zhì)量檢測)觀察下列等式:×=1-,×+×=1-,×+×+×=1-,……,由以上等式推測到
13、一個一般的結(jié)論:對于n∈N*,×+×+…+×=________________.
[答案] 1-
[解析] 由已知中的等式:×=1-
×+×=1-,
×+×+×=1-,…,
所以對于n∈N*,×+×+…+×=1-.
三、解答題(本大題共6個大題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟)
17.(本題滿分12分)已知:a、b、c∈R,且a+b+c=1.
求證:a2+b2+c2≥.
[證明] 由a2+b2≥2ab,及b2+c2≥2bc,c2+a2≥2ca.
三式相加得a2+b2+c2≥ab+bc+ca.
∴3(a2+b2+c2)≥(a2+b2+c2)+2(ab+bc
14、+ca)=(a+b+c)2.
由a+b+c=1,得3(a2+b2+c2)≥1,
即a2+b2+c2≥.
18.(本題滿分12分)我們知道,在△ABC中,若c2=a2+b2,則△ABC是直角三角形.現(xiàn)在請你研究:若cn=an+bn(n>2),問△ABC為何種三角形?為什么?
[解析] 銳角三角形 ∵cn=an+bn (n>2),∴c>a, c>b,由c是△ABC的最大邊,所以要證△ABC是銳角三角形,只需證角C為銳角,即證cosC>0.
∵cosC=,
∴要證cosC>0,只要證a2+b2>c2,①
注意到條件:an+bn=cn,
于是將①等價變形為:(a2+b2)cn-2>cn
15、.②
∵c>a,c>b,n>2,∴cn-2>an-2,cn-2>bn-2,
即cn-2-an-2>0,cn-2-bn-2>0,
從而(a2+b2)cn-2-cn=(a2+b2)cn-2-an-bn
=a2(cn-2-an-2)+b2(cn-2-bn-2)>0,
這說明②式成立,從而①式也成立.
故cosC>0,C是銳角,△ABC為銳角三角形.
19.(本題滿分12分)(2015·吉林市實驗中學(xué)高二期中)橢圓與雙曲線有許多優(yōu)美的對稱性質(zhì).對于橢圓+=1(a>b>0)有如下命題:AB是橢圓+=1(a>b>0)的不平行于對稱軸且不過原點的弦,M為AB的中點,則kOM·kAB=-為定值.
16、那么對于雙曲線-=1(a>0,b>0),則有命題:AB是雙曲線-=1(a>0,b>0)的不平行于對稱軸且不過原點的弦,M為AB的中點,猜想kOM·kAB的值,并證明.
[解析] 設(shè)A(x1,y1),B(x2,y2),M(x0,y0),則有
kOM==,kAB=,
即kOM·kAB==.
將A、B坐標(biāo)代入雙曲線方程-=1中可得:
-=1①
-=1②
①-②得:=,
∴=,即kOM·kAB=.
20.(本題滿分12分)若x>0,y>0,用分析法證明:(x2+y2)>(x3+y3).
[證明] 要證(x2+y2)>(x3+y3),
只需證(x2+y2)3>(x3+y3)2,
17、即證x6+3x4y2+3x2y4+y6>x6+2x3y3+y6,
即證3x4y2+3y4x2>2x3y3.
又因為x>0,y>0,所以x2y2>0,
故只需證3x2+3y2>2xy.
而3x2+3y2>x2+y2≥2xy成立,
所以(x2+y2)>(x3+y3)成立.
21.(本題滿分12分)已知函數(shù)f(x)=ax+(a>1).
(1)證明:函數(shù)f(x)在(-1,+∞)上為增函數(shù);
(2)用反證法證明方程f(x)=0沒有負(fù)數(shù)根.
[解析] (1)證法1:任取x1、x2∈(-1,+∞),不妨設(shè)x10,ax2-x1>1且ax1>0,
∴ax2-ax1=ax
18、1(ax2-x1-1)>0,
又∵x1+1>0,x2+1>0,
∴-==>0,
于是f(x2)-f(x1)=ax2-ax1+->0,
故函數(shù)f(x)在(-1,+∞)上為增函數(shù).
證法2:f ′(x)=axlna+=axlna+
∵a>1,∴l(xiāng)na>0,∴axlna+>0,
f ′(x)>0在(-1,+∞)上恒成立,
即f(x)在(-1,+∞)上為增函數(shù).
(2)解法1:設(shè)存在x0<0(x0≠-1)滿足f(x0)=0,
則ax0=-,且0
19、
①若-10,ax0>0,∴f(x0)>0.
綜上,x<0(x≠-1)時,f(x)<-1或f(x)>0,即方程f(x)=0無負(fù)數(shù)根.
22.(本題滿分14分)設(shè)數(shù)列a1,a2,…an,…中的每一項都不為0.證明{an}為等差數(shù)列的充分必要條件是:對任何n∈N+,都有++…+=.
[分析] 本題考查等差數(shù)列、數(shù)學(xué)歸納法與充要條件等有關(guān)知識,考查推理論證、運算求解能力.
解題思路是利用裂項求和法證必要性,再用數(shù)學(xué)歸納法或綜合法證明充分性.
[證明] 先證必要性.
設(shè)數(shù)列{an}的公差為d.若d=0,則所述等式顯
20、然成立.
若d≠0,則++…+=
====.
再證充分性.
證法1:(數(shù)學(xué)歸納法)設(shè)所述的等式對一切n∈N+都成立.首先,在等式+=兩端同乘a1a2a3,即得a1+a3=2a2,所以a1,a2,a3成等差數(shù)列,記公差為d,則a2=a1+d.
假設(shè)ak=a1+(k-1)d,當(dāng)n=k+1時,觀察如下兩個等式
++…+=,①
++…++=②
將①代入②,得+=,
在該式兩端同乘a1akak+1,得(k-1)ak+1+a1=kak.
將ak=a1+(k-1)d代入其中,整理后,得ak+1=a1+kd.
由數(shù)學(xué)歸納法原理知,對一切n∈N,都有an=a1+(n-1)d,所以{an}是公差為d的等差數(shù)列.
證法2:(直接證法)依題意有
++…+=,①
++…++=.②
②-①得=-,
在上式兩端同乘a1an+1an+2,得a1=(n+1)an+1-nan+2.③
同理可得a1=nan-(n-1)an+1(n≥2)④
③-④得2nan+1=n(an+2+an)
即an+2-an+1=an+1-an,
由證法1知a3-a2=a2-a1,故上式對任意n∈N*均成立.所以{an}是等差數(shù)列.