《新編五年高考真題高考數(shù)學(xué)復(fù)習(xí) 第八章 第四節(jié) 空間中平行的判定與性質(zhì) 理全國通用》由會員分享,可在線閱讀,更多相關(guān)《新編五年高考真題高考數(shù)學(xué)復(fù)習(xí) 第八章 第四節(jié) 空間中平行的判定與性質(zhì) 理全國通用(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第四節(jié)第四節(jié)空間中平行的判定與性質(zhì)空間中平行的判定與性質(zhì)考點空間中平行的判定與性質(zhì)1(20 xx廣東,6)設(shè)m,n是兩條不同的直線,是兩個不同的平面下列命題中正確的是()A若,m,n,則mnB若,m,n,則mnC若mn,m,n,則D若m,mn,n,則解析A 項中,m與n還可能平行或異面,故不正確;B 項中,m與n還可能異面,故不正確;C 項中,與還可能平行或相交,故不正確;D 項中,m,mn,n.又n,故選 D.答案D2(20 xx四川,6)下列命題正確的是()A若兩條直線和同一個平面所成的角相等,則這兩條直線平行B若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行C若一條直線平行于
2、兩個相交平面,則這條直線與這兩個平面的交線平行D若兩個平面都垂直于第三個平面,則這兩個平面平行解析若兩條直線和同一平面所成的角相等,則這兩條直線可平行、可異面、可相交選項 A 錯;如果到一個平面距離相等的三個點在同一條直線上或在這個平面的兩側(cè),則經(jīng)過這三個點的平面與這個平面相交,選項 B 不正確;如圖, 平面b,a,a, 過直線a作平面c, 過直線a作平面d,a,ac,a,ad,dc,c,d,d,又d,db,ab,選項 C 正確;若兩個平面都垂直于第三個平面,則這兩個平面可平行、可相交,選項 D 不正確答案C3(20 xx江蘇,16)如圖,在直三棱柱ABCA1B1C1中,已知ACBC,BCCC
3、1.設(shè)AB1的中點為D,B1CBC1E.求證:(1)DE平面AA1C1C;(2)BC1AB1.證明(1)由題意知,E為B1C的中點,又D為AB1的中點,因此DEAC.又因為DE 平面AA1C1C,AC平面AA1C1C,所以DE平面AA1C1C.(2)因為棱柱ABCA1B1C1是直三棱柱,所以CC1平面ABC.因為AC平面ABC,所以ACCC1.又因為ACBC,CC1平面BCC1B1,BC平面BCC1B1,BCCC1C,所以AC平面BCC1B1.又因為BC1平面BCC1B1,所以BC1AC.因為BCCC1,所以矩形BCC1B1是正方形,因此BC1B1C.因為AC,B1C平面B1AC,ACB1CC
4、,所以BC1平面B1AC.又因為AB1平面B1AC,所以BC1AB1.4(20 xx江蘇,16)如圖,在三棱錐PABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點已知PAAC,PA6,BC8,DF5.求證:(1)直線PA平面DEF;(2)平面BDE平面ABC.證明(1)因為D,E分別為棱PC,AC的中點,所以DEPA.又因為PA 平面DEF,DE平面DEF,所以直線PA平面DEF.(2)因為D,E,F(xiàn)分別為棱PC,AC,AB的中點,PA6,BC8,所以DEPA,DE12PA3,EF12BC4.又因為DF5,故DF2DE2EF2,所以DEF90,即DEEF.又PAAC,DEPA,所以DEAC.因
5、為ACEFE,AC平面ABC,EF平面ABC,所以DE平面ABC.又DE平面BDE,所以平面BDE平面ABC.5(20 xx新課標(biāo)全國,18)如圖,四棱錐PABCD中,底面ABCD為矩形,PA平面ABCD,E為PD的中點(1)證明:PB平面AEC;(2)設(shè)二面角DAEC為 60,AP1,AD 3, 求三棱錐EACD的體積(1)證明連接BD交AC于點O,連接EO.因為ABCD為矩形,所以O(shè)為BD的中點又E為PD的中點,所以EOPB.又因為EO平面AEC,PB 平面AEC,所以PB平面AEC.(2)解因為PA平面ABCD,ABCD為矩形,所以AB,AD,AP兩兩垂直如圖,以A為坐標(biāo)原點,AB的方向
6、為x軸的正方向,|AP|為單位長,建立空間直角坐標(biāo)系A(chǔ)xyz,則D(0, 3,0),E0,32,12 ,AE0,32,12 .設(shè)B(m,0,0)(m0),則C(m, 3,0),AC(m, 3,0)設(shè)n n1(x,y,z)為平面ACE的法向量,則n n1AC0,n n1AE0,即mx 3y0,32y12z0,可取n n13m,1, 3.又n n2(1,0,0)為平面DAE的法向量,由題設(shè)知|cosn n1 1,n n2 2|12,即334m212,解得m32.因為E為PD的中點, 所以三棱錐EACD的高為12, 三棱錐EACD的體積V1312 3321238.6(20 xx湖北,19)如圖,在棱
7、長為 2 的正方體ABCDA1B1C1D1中,E,F(xiàn),M,N分別是棱AB,AD,A1B1,A1D1的中點,點P,Q分別在棱DD1,BB1上移動,且DPBQ(02)(1)當(dāng)1 時,證明:直線BC1平面EFPQ;(2)是否存在,使面EFPQ與面PQMN所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由法一(幾何法)(1)證明如圖 1,連接AD1,由ABCDA1B1C1D1是正方體,知BC1AD1.當(dāng)1 時,P是DD1的中點,又F是AD的中點,所以FPAD1.所以BC1FP.而FP平面EFPQ,且BC1 平面EFPQ,故直線BC1平面EFPQ.(2)解如圖 2,連接BD.因為E,F(xiàn)分別是A
8、B,AD的中點,所以EFBD,且EF12BD.又DPBQ,DPBQ,所以四邊形PQBD是平行四邊形,故PQBD,且PQBD,從而EFPQ,且EF12PQ.在 RtEBQ和 RtFDP中,因為BQDP,BEDF1,于是EQFP 12,所以四邊形EFPQ是等腰梯形同理可證四邊形PQMN是等腰梯形分別取EF,PQ,MN的中點為H,O,G,連接OH,OG,則GOPQ,HOPQ,而GOHOO,故GOH是面EFPQ與面PQMN所成的二面角的平面角若存在,使面EFPQ與面PQMN所成的二面角為直二面角,則GOH90.連接EM,F(xiàn)N,則由EFMN,且EFMN,知四邊形EFNM是平行四邊形連接GH,因為H,G是
9、EF,MN的中點,所以GHME2.在GOH中,GH24,OH212222212,OG21(2)2222(2)212,由OG2OH2GH2,得(2)2122124,解得122,故存在122,使面EFPQ與面PQMN所成的二面角為直二面角法二(向量方法)以D為原點,射線DA,DC,DD1分別為x,y,z軸的正半軸建立如圖 3 所示的空間直角坐標(biāo)系Dxyz.由已知得B(2,2,0),C1(0,2,2),E(2,1,0),F(xiàn)(1,0,0),P(0,0,)BC1(2,0,2),F(xiàn)P(1,0,),F(xiàn)E(1,1,0)(1)證明當(dāng)1 時,F(xiàn)P(1,0,1),又因為BC1(2,0,2),所以BC12FP,即BC
10、1FP.而FP平面EFPQ,且BC1 平面EFPQ,故直線BC1平面EFPQ.(2)解設(shè)平面EFPQ的一個法向量為n n(x,y,z),則由FEn n0,F(xiàn)Pn n0,可得xy0,xz0.于是可取n n(,1)同理可得平面MNPQ的一個法向量為m m(2,2,1)若存在,使面EFPQ與面PQMN所成的二面角為直二面角,則m mn n(2,2,1)(,1)0,即(2)(2)10,解得122.故存在122,使面EFPQ與面PQMN所成的二面角為直二面角7(20 xx江蘇,16)如圖,在三棱錐SABC中,平面SAB平面SBC,ABBC,ASAB.過A作AFSB,垂足為F,點E,G分別是棱SA,SC的
11、中點求證:(1)平面EFG平面ABC;(2)BCSA.證明(1)因為ASAB,AFSB,垂足為F,所以F是SB的中點,又因為E是SA的中點,所以EFAB.因為EF 平面ABC,AB平面ABC,所以EF平面ABC.同理EG平面ABC.又EFEGE,所以平面EFG平面ABC.(2)因為平面SAB平面SBC,且交線為SB,又AF平面SAB,AFSB,所以AF平面SBC.因為BC平面SBC,所以AFBC.又因為ABBC,AFABA,AF,AB平面SAB,所以BC平面SAB.因為SA平面SAB,所以BCSA.8.(20 xx新課標(biāo)全國,18)如圖,在直三棱柱ABCA1B1C1中,D,E分別是AB,BB1
12、的中點,AA1ACCB22AB.(1)證明:BC1平面A1CD;(2)求二面角DA1CE的正弦值(1)證明連接AC1交A1C于點F,則F為AC1的中點又D是AB的中點,連接DF,則BC1DF.因為DF平面A1CD,BC1 平面A1CD,所以BC1平面A1CD.(2)解由ACCB22AB得,ACBC.以C為坐標(biāo)原點,CA的方向為x軸正方向,CB的方向為y軸正方向,CC1的方向為z軸正方向,建立如圖所示的空間直角坐標(biāo)系Cxyz.設(shè)CA2,則D(1,1,0),E(0,2,1),A1(2,0,2)CD(1,1,0),CE(0,2,1),CA1(2,0,2)設(shè)n n(x1,y1,z1)是平面A1CD的法向量,則n nCD0,n nCA10,即x1y10,2x12z10.可取n n(1,1,1)同理,設(shè)m m(x2,y2,z2)是平面A1CE的法向量,則m mCE0,m mCA10,即2y2z20,2x22z20.可取m m(2,1,2)從而 cosn n,m mn nm m|n n|m m|33,故 sinn n,m m63.即二面角 DA1CE 的正弦值為63.