帶孔支架彎曲件級進(jìn)模的設(shè)計【說明書+CAD】
帶孔支架彎曲件級進(jìn)模的設(shè)計【說明書+CAD】,說明書+CAD,帶孔支架彎曲件級進(jìn)模的設(shè)計【說明書+CAD】,支架,彎曲,件級進(jìn)模,設(shè)計,說明書,CAD
參考文獻(xiàn)
[1] 劉建超 張寶忠.沖壓模具設(shè)計與制造. 北京:高等教育出版社,2004
[2] 史鐵梁. 冷沖模設(shè)計指導(dǎo). 北京:機(jī)械工業(yè)出版社, 2001
[3] 王俊彪 .多工位級進(jìn)模設(shè)計. 西安:
( 級進(jìn)模設(shè)計)
[摘要] 根據(jù)沖制零件的結(jié)構(gòu)特點,提出適合沖制零件沖壓工藝的模具結(jié)構(gòu)和設(shè)計了生產(chǎn)該零件的級進(jìn)模,并詳細(xì)描述了模具的工作過程。介紹了級進(jìn)模的設(shè)計方案、設(shè)計要點和模具設(shè)計時應(yīng)注意的問題,并對模具零件的設(shè)計計算作了較詳細(xì)的闡述。
根據(jù)級進(jìn)模的結(jié)構(gòu)和設(shè)計要求,該模具采用了正倒裝結(jié)構(gòu)和對角導(dǎo)柱式模架。根據(jù)沖壓模和壓力機(jī)的關(guān)系選擇壓力機(jī)和確定了模架和模柄。級進(jìn)模的結(jié)構(gòu)設(shè)計包括毛坯的排樣、工序的排樣、沖壓力的計算、模具結(jié)構(gòu)的設(shè)計、模具零件的設(shè)計及模具的制造工藝等 。
模具結(jié)構(gòu)的設(shè)計,降低了生產(chǎn)成本。經(jīng)生產(chǎn)驗證,模具結(jié)構(gòu)穩(wěn)定,可靠,效果很好,對類似產(chǎn)品的注射模設(shè)計有很好的參考價值。
關(guān)鍵詞: 級進(jìn)模 毛坯排樣 工序排樣 模具結(jié)構(gòu)
河南機(jī)電高等專科學(xué)校材料工程系
畢業(yè)設(shè)計(論文)成品規(guī)范
畢業(yè)設(shè)計(論文)是經(jīng)過指導(dǎo)老師評審的原始設(shè)計(研究)成果,具有一定的獨創(chuàng)性,它所探討的問題比較專深,對所研究的問題的闡述比較系統(tǒng),具有一定的收藏和參考價值。
1 對畢業(yè)論文的基本要求
畢業(yè)論文包括以下內(nèi)容:封面, 畢業(yè)設(shè)計任務(wù)書,插圖清單和表格清單,中文摘要和關(guān)鍵詞,英文摘要和關(guān)鍵詞,目錄,緒論、第1章,正文,結(jié)論(最后一章),致謝,參考文獻(xiàn),如有必要,還可另外增加附錄。畢業(yè)設(shè)計論文用漢字書寫。
(1)摘要應(yīng)以濃縮的形式概括課題的內(nèi)容、方法、觀點以及取得的成果和結(jié)論。其中成果和結(jié)論性文字是摘要的重點。摘要應(yīng)是一篇獨立的短文,字?jǐn)?shù)在300漢字左右。關(guān)鍵詞列寫在摘要之后。所謂關(guān)鍵詞是從文獻(xiàn)的標(biāo)題、正文或摘要中選出的、具有實意的、反映文獻(xiàn)內(nèi)容特點的詞匯。關(guān)鍵詞不能隨意杜撰,推薦使用慣用的專業(yè)詞匯。關(guān)鍵詞個數(shù)為3~5個。
(2)緒論應(yīng)說明畢業(yè)設(shè)計(論文)課題的意義、目的以及應(yīng)達(dá)到的要求;簡述或評述本課題的國內(nèi)外概況及水平;本課題擬解決的主要問題、采用的手段和方法等。緒論一般不少于1500個漢字
(3)正文是設(shè)計或研究工作的詳細(xì)表述,其內(nèi)容因課題而異。正文不少于2萬漢字,對圖紙工作量大的模具設(shè)計課題,設(shè)計說明書的正文應(yīng)不少于1萬漢字。
(4)結(jié)論包括設(shè)計或研究所取得的主要成果、成果的特色和創(chuàng)新點、本課題尚存在的問題以及進(jìn)一步開展工作的建議。結(jié)論是本人工作的總結(jié),盡量少提前人、他人所得成果或結(jié)論。注意介紹自己成果時要實事求是,切忌言過其實。結(jié)論用語應(yīng)該明確、精煉、完整、準(zhǔn)確,篇幅一般在1000字以內(nèi)。
(5)謝辭應(yīng)以簡潔、禮貌的言辭對在畢業(yè)設(shè)計過程中對提供過幫助的指導(dǎo)教師、答疑教師和其他人員表示自己的謝意,這是作者道德修養(yǎng)的一種體現(xiàn)。致謝字?jǐn)?shù)一般在200漢字左右。
(6)參考文獻(xiàn)反映畢業(yè)設(shè)計或論文的取材來源和廣博程度,它可從一個側(cè)面反映作者工作的可信程度和水平。同時,列寫參考文獻(xiàn)也是對文獻(xiàn)作者的尊重。所列寫的參考文獻(xiàn)必須是作者本人為完成畢業(yè)設(shè)計(論文)親自閱讀過的,不能隨便拼湊。參考文獻(xiàn)不少于10篇,其中應(yīng)有外文參考文獻(xiàn)。
2 用紙和版芯
論文采用A4(210 mm297 mm),在“頁面設(shè)置/頁邊距”中設(shè)置參數(shù)為:上3 cm,下3 cm,左3 cm,右3 cm,裝訂0 cm,頁眉2.5 cm,頁腳2.5 cm。在“頁面設(shè)置/文檔網(wǎng)格”中設(shè)置“只指定行網(wǎng)格”和每頁“35”行。在此版芯尺寸下,如全部為小4號漢字,每行約為35字,每頁約為35行。
3 字號和字體
3.1 正文字號和字體
漢字:各章標(biāo)題和目錄、摘要、謝辭、參考文獻(xiàn)、附錄等部分的標(biāo)題用3號黑體;各節(jié)標(biāo)題用4號黑體;各條標(biāo)題、各款標(biāo)題用小4號黑體,正文段落文字小4號宋體;圖題和表題用5號宋體,表格內(nèi)和插圖中的文字一般用5號宋體,根據(jù)需要在保證清楚的前提下也可用更小號的字體;頁眉和頁碼用小5號字。
英文:英文字體和數(shù)字采用TIMES NEW ROMAR字體,與中文混排的英文字體應(yīng)與周圍的漢字大小一致。
3.2 外文譯文及原文的字號和字體(具體按指導(dǎo)教師安排)
譯文段落文字采用小5號漢字,原文段落文字采用TIMES NEW 小5號ROMAR字體。
3.3 標(biāo)點符號
正文段落文字使用全角標(biāo)點符號。標(biāo)題、表題、圖題、英文摘要和參考文獻(xiàn)統(tǒng)一使用半角標(biāo)點符號。
4 排版體例
為便于控制尺寸,除特別說明之處外,所謂“空一行”特指采用小4號漢字、單倍行距時的空行。
4.1 標(biāo)題
前四級用阿拉伯?dāng)?shù)字編序,中間以黑圓點間隔,第五級用⑴、⑵、…。例如對第1章的標(biāo)題分級可為:
1 ××…× 章,3號黑體,新起一頁,居中,上下各空1行,章序與章題間空一格
1.1 ××…× 節(jié),4號黑體,左頂格,上下各空1行,節(jié)序與節(jié)題間空一格
1.1.1 ××…× 條,小4號黑體,左頂格,上下各空1行,條序與條題間空一格
1.1.1.1 ××…× (后續(xù)內(nèi)容) 款,小4號黑體,左頂格,款序與款題間空一格,后續(xù)內(nèi)容用小4號宋體在標(biāo)題后空一格接排。
⑴(后續(xù)內(nèi)容) 項,項序左起空兩格書寫,后續(xù)內(nèi)容用小4號宋體接排。
⑵(后續(xù)內(nèi)容)
中文摘要與英文摘要、謝辭與參考文獻(xiàn)、附錄等部分標(biāo)題均新起一頁,用3號黑體,上下各空1行,居中書寫。
前四級標(biāo)題不能位于頁面的最后一行。
4.2 公式
公式中的外文字體用法應(yīng)符合國家標(biāo)準(zhǔn)的要求。
正文中的公式字號通過WORD公式3中“尺寸”項設(shè)置,選標(biāo)準(zhǔn)參數(shù)即可;字體和字符格式通過“樣式-定義”項設(shè)置,其中“文字”、“函數(shù)”、“變量”、“矩陣向量”和“數(shù)字”字體設(shè)置為“TIMES NEW ROMAN”,“小寫希臘字母”、“大寫希臘字母”和“符號”的字體設(shè)置為“SYMBOL”,“變量”、“小寫希臘字母”的字符格式設(shè)置為“傾斜”,“矩陣向量”的字符格式設(shè)置為“傾斜”和“加粗”。
用拉丁字母書寫的物理量的單位符號一般為白正體字母??砂凑战滩闹械膯挝环柛袷綍鴮?。
公式原則上居中書寫。公式末不加標(biāo)點。公式序號外加圓括號,其右側(cè)與右邊線頂邊排寫。公式中第一次出現(xiàn)的量的符號應(yīng)予以注釋。注釋行中的破折號占兩個字。注釋行中的量的單位與正文之間用逗號隔開。最后一個注釋行后用句號,其余的用分號。公式與正文之間要有一行的間距。
對常見公式,對其中的量可不進(jìn)行逐一說明,但應(yīng)在公式符號注釋中寫“各符號的含義見文獻(xiàn)[*]。”,其中“*”為參考文獻(xiàn)的序號。
河南機(jī)電高等??茖W(xué)校
材料工程系
專業(yè)
畢業(yè)設(shè)計/論文
設(shè)計/論文題目:
班 級:
姓 名:
指導(dǎo)老師:
完成時間:
畢業(yè)設(shè)計(論文)成績
畢業(yè)設(shè)計成績
指導(dǎo)老師認(rèn)定成績
小組答辯成績
答辯成績
指導(dǎo)老師簽字
答辯委員會簽字
答辯委員會主任簽字
畢業(yè)設(shè)計/論文任務(wù)書
題目:
內(nèi)容:(1)
(2)
(3)
(4)
(5)
(6)
原始資料:
畢業(yè)設(shè)計/論文說明書目錄
(畢業(yè)設(shè)計/論文題目)
摘要
( 中文)
(畢業(yè)設(shè)計/論文英文題目)
Abstract
機(jī)械加工工藝過程卡
機(jī)械加工工藝過程卡片
產(chǎn)品型號
零(部)件圖號
產(chǎn)品名稱
零(部)件名稱
共( )頁第( )頁
材料牌號
毛坯
種類
毛坯外型尺寸
每個毛坯可制件數(shù)
每臺
件數(shù)
備注
工序號
工序名稱
工 序 內(nèi) 容
車間
工段
設(shè)備
工 藝 裝 備
工時
準(zhǔn)終
單件
設(shè)計日期
審核日期
標(biāo)準(zhǔn)化日期
會簽
日期
標(biāo)記
記數(shù)
更改文
件號
簽字
日期
標(biāo)記
處數(shù)
更該文件號
致謝
參考文獻(xiàn)
[1]
目錄
緒論 ……………………………………………………………1
第一章 確定零件的基本沖壓工序
1.1 零件的基本形狀及問題 …………………………………………1
1.2 制件的工藝性分析 ………………………………………………1
第二章 沖壓力的計算
2.1 沖裁力的計算 ………………………………………………………7
2.2 彎曲力的計算 ………………………………………………………8
2.3 卸料力的計算 ………………………………………………………8
2.4 總壓力的計算 ……………………………………………………… 8
2.5 壓力中心的確定 ……………………………………………………9
第三章 模具結(jié)果總體設(shè)計
3.1 基本結(jié)果形式 …………………………………………………………10
3.2 基本尺寸的確定 ………………………………………………………11
3.3 模架的選擇 ……………………………………………………………11
3.4 壓力機(jī)的選擇 …………………………………………………………12
3.5 模柄的選擇 ……………………………………………………………12
第四章 模具結(jié)果詳細(xì)設(shè)計
4.1 工作單元結(jié)構(gòu) …………………………………………………13
4.2 卸料機(jī)構(gòu)設(shè)計 …………………………………………………13
4.3 定距機(jī)構(gòu)設(shè)計 …………………………………………………13
4.4 導(dǎo)正銷的結(jié)構(gòu) …………………………………………………13
4.5 頂料機(jī)構(gòu) ………………………………………………………13
4.6 模具零件的固定 ………………………………………………13
4.7 送料與出件方式 ………………………………………………14
4.8 安全裝置 ………………………………………………………14
4.9 模具零件選材 …………………………………………………14
4.10 模具裝配圖 ……………………………………………………14
第五章 模具零件設(shè)計
5.1 工作零件設(shè)計 …………………………………………………15
5.2 凸模零件設(shè)計 …………………………………………………21
5.3 彈性元件 ………………………………………………………21
5.4 模具零件強(qiáng)度校核 ……………………………………………22
第六章 模具的制造工藝設(shè)計
6.1 凸模加工工藝過程 ……………………………………………24
6.2 凹模加工工藝過程 ……………………………………………24
6.3 卸料板的加工工藝過程 ………………………………………24
結(jié)論 ………………………………………………………………………………致謝 ………………………………………………………………………………
參考文獻(xiàn) ……………………………………………………………
河南機(jī)電高等??茖W(xué)校材料工程系
畢業(yè)設(shè)計(論文)成品規(guī)范
畢業(yè)設(shè)計(論文)是經(jīng)過指導(dǎo)老師評審的原始設(shè)計(研究)成果,具有一定的獨創(chuàng)性,它所探討的問題比較專深,對所研究的問題的闡述比較系統(tǒng),具有一定的收藏和參考價值。
1 對畢業(yè)論文的基本要求
畢業(yè)論文包括以下內(nèi)容:封面, 畢業(yè)設(shè)計任務(wù)書,插圖清單和表格清單,中文摘要和關(guān)鍵詞,英文摘要和關(guān)鍵詞,目錄,緒論、第1章,正文,結(jié)論(最后一章),致謝,參考文獻(xiàn),如有必要,還可另外增加附錄。畢業(yè)設(shè)計論文用漢字書寫。
(1)摘要應(yīng)以濃縮的形式概括課題的內(nèi)容、方法、觀點以及取得的成果和結(jié)論。其中成果和結(jié)論性文字是摘要的重點。摘要應(yīng)是一篇獨立的短文,字?jǐn)?shù)在300漢字左右。關(guān)鍵詞列寫在摘要之后。所謂關(guān)鍵詞是從文獻(xiàn)的標(biāo)題、正文或摘要中選出的、具有實意的、反映文獻(xiàn)內(nèi)容特點的詞匯。關(guān)鍵詞不能隨意杜撰,推薦使用慣用的專業(yè)詞匯。關(guān)鍵詞個數(shù)為3~5個。
(2)緒論應(yīng)說明畢業(yè)設(shè)計(論文)課題的意義、目的以及應(yīng)達(dá)到的要求;簡述或評述本課題的國內(nèi)外概況及水平;本課題擬解決的主要問題、采用的手段和方法等。緒論一般不少于1500個漢字
(3)正文是設(shè)計或研究工作的詳細(xì)表述,其內(nèi)容因課題而異。正文不少于2萬漢字,對圖紙工作量大的模具設(shè)計課題,設(shè)計說明書的正文應(yīng)不少于1萬漢字。
(4)結(jié)論包括設(shè)計或研究所取得的主要成果、成果的特色和創(chuàng)新點、本課題尚存在的問題以及進(jìn)一步開展工作的建議。結(jié)論是本人工作的總結(jié),盡量少提前人、他人所得成果或結(jié)論。注意介紹自己成果時要實事求是,切忌言過其實。結(jié)論用語應(yīng)該明確、精煉、完整、準(zhǔn)確,篇幅一般在1000字以內(nèi)。
(5)謝辭應(yīng)以簡潔、禮貌的言辭對在畢業(yè)設(shè)計過程中對提供過幫助的指導(dǎo)教師、答疑教師和其他人員表示自己的謝意,這是作者道德修養(yǎng)的一種體現(xiàn)。致謝字?jǐn)?shù)一般在200漢字左右。
(6)參考文獻(xiàn)反映畢業(yè)設(shè)計或論文的取材來源和廣博程度,它可從一個側(cè)面反映作者工作的可信程度和水平。同時,列寫參考文獻(xiàn)也是對文獻(xiàn)作者的尊重。所列寫的參考文獻(xiàn)必須是作者本人為完成畢業(yè)設(shè)計(論文)親自閱讀過的,不能隨便拼湊。參考文獻(xiàn)不少于10篇,其中應(yīng)有外文參考文獻(xiàn)。
2 用紙和版芯
論文采用A4(210 mm297 mm),在“頁面設(shè)置/頁邊距”中設(shè)置參數(shù)為:上3 cm,下3 cm,左3 cm,右3 cm,裝訂0 cm,頁眉2.5 cm,頁腳2.5 cm。在“頁面設(shè)置/文檔網(wǎng)格”中設(shè)置“只指定行網(wǎng)格”和每頁“35”行。在此版芯尺寸下,如全部為小4號漢字,每行約為35字,每頁約為35行。
3 字號和字體
3.1 正文字號和字體
漢字:各章標(biāo)題和目錄、摘要、謝辭、參考文獻(xiàn)、附錄等部分的標(biāo)題用3號黑體;各節(jié)標(biāo)題用4號黑體;各條標(biāo)題、各款標(biāo)題用小4號黑體,正文段落文字小4號宋體;圖題和表題用5號宋體,表格內(nèi)和插圖中的文字一般用5號宋體,根據(jù)需要在保證清楚的前提下也可用更小號的字體;頁眉和頁碼用小5號字。
英文:英文字體和數(shù)字采用TIMES NEW ROMAR字體,與中文混排的英文字體應(yīng)與周圍的漢字大小一致。
3.2 外文譯文及原文的字號和字體(具體按指導(dǎo)教師安排)
譯文段落文字采用小5號漢字,原文段落文字采用TIMES NEW 小5號ROMAR字體。
3.3 標(biāo)點符號
正文段落文字使用全角標(biāo)點符號。標(biāo)題、表題、圖題、英文摘要和參考文獻(xiàn)統(tǒng)一使用半角標(biāo)點符號。
4 排版體例
為便于控制尺寸,除特別說明之處外,所謂“空一行”特指采用小4號漢字、單倍行距時的空行。
4.1 標(biāo)題
前四級用阿拉伯?dāng)?shù)字編序,中間以黑圓點間隔,第五級用⑴、⑵、…。例如對第1章的標(biāo)題分級可為:
1 ××…× 章,3號黑體,新起一頁,居中,上下各空1行,章序與章題間空一格
1.1 ××…× 節(jié),4號黑體,左頂格,上下各空1行,節(jié)序與節(jié)題間空一格
1.1.1 ××…× 條,小4號黑體,左頂格,上下各空1行,條序與條題間空一格
1.1.1.1 ××…× (后續(xù)內(nèi)容) 款,小4號黑體,左頂格,款序與款題間空一格,后續(xù)內(nèi)容用小4號宋體在標(biāo)題后空一格接排。
⑴(后續(xù)內(nèi)容) 項,項序左起空兩格書寫,后續(xù)內(nèi)容用小4號宋體接排。
⑵(后續(xù)內(nèi)容)
中文摘要與英文摘要、謝辭與參考文獻(xiàn)、附錄等部分標(biāo)題均新起一頁,用3號黑體,上下各空1行,居中書寫。
前四級標(biāo)題不能位于頁面的最后一行。
4.2 公式
公式中的外文字體用法應(yīng)符合國家標(biāo)準(zhǔn)的要求。
正文中的公式字號通過WORD公式3中“尺寸”項設(shè)置,選標(biāo)準(zhǔn)參數(shù)即可;字體和字符格式通過“樣式-定義”項設(shè)置,其中“文字”、“函數(shù)”、“變量”、“矩陣向量”和“數(shù)字”字體設(shè)置為“TIMES NEW ROMAN”,“小寫希臘字母”、“大寫希臘字母”和“符號”的字體設(shè)置為“SYMBOL”,“變量”、“小寫希臘字母”的字符格式設(shè)置為“傾斜”,“矩陣向量”的字符格式設(shè)置為“傾斜”和“加粗”。
用拉丁字母書寫的物理量的單位符號一般為白正體字母??砂凑战滩闹械膯挝环柛袷綍鴮?。
公式原則上居中書寫。公式末不加標(biāo)點。公式序號外加圓括號,其右側(cè)與右邊線頂邊排寫。公式中第一次出現(xiàn)的量的符號應(yīng)予以注釋。注釋行中的破折號占兩個字。注釋行中的量的單位與正文之間用逗號隔開。最后一個注釋行后用句號,其余的用分號。公式與正文之間要有一行的間距。
對常見公式,對其中的量可不進(jìn)行逐一說明,但應(yīng)在公式符號注釋中寫“各符號的含義見文獻(xiàn)[*]。”,其中“*”為參考文獻(xiàn)的序號。
河南機(jī)電高等??茖W(xué)校
材料工程系
專業(yè)
畢業(yè)設(shè)計/論文
設(shè)計/論文題目:
班 級:
姓 名:
指導(dǎo)老師:
完成時間:
畢業(yè)設(shè)計(論文)成績
畢業(yè)設(shè)計成績
指導(dǎo)老師認(rèn)定成績
小組答辯成績
答辯成績
指導(dǎo)老師簽字
答辯委員會簽字
答辯委員會主任簽字
畢業(yè)設(shè)計/論文任務(wù)書
題目:
內(nèi)容:(1)
(2)
(3)
(4)
(5)
(6)
原始資料:
插圖清單
表格清單
畢業(yè)設(shè)計/論文說明書目錄
(畢業(yè)設(shè)計/論文題目)
摘要
( 中文)
(畢業(yè)設(shè)計/論文英文題目)
Abstract
河南機(jī)電高等??茖W(xué)校材料工程系畢業(yè)設(shè)計說明書/論文
(正文若干頁)
機(jī)械加工工序卡片
產(chǎn)品型號
零(部)件圖號
產(chǎn)品名稱
零(部)件名稱
共( )頁
第( )頁
車間
工序號
工序名稱
材料牌號
毛坯種類
毛坯外形尺寸
每個毛坯可制件數(shù)
每臺件數(shù)
設(shè)備名稱
設(shè)備型號
設(shè)備編號
同時加工件數(shù)
夾具編號
夾具名稱
切削液
工位器具編號
工位器具名稱
工序工時
準(zhǔn)終
單件
工步號
工步內(nèi)容
工藝裝備
主軸轉(zhuǎn)速
r·minˉ1
切削速度
m·minˉ1
進(jìn)給量
mm·rˉ1
切削深度
mm
進(jìn)給次數(shù)
工步工時
機(jī)動
輔助
設(shè) 計(日期)
審 核(日期)
標(biāo)準(zhǔn)化(日期)
會 簽(日期)
標(biāo)記
處數(shù)
更改文件號
簽字
日期
標(biāo)記
處數(shù)
更改文件號
簽字
日期
模具典型零件機(jī)械加工工序卡
(模具專業(yè)沖壓、塑料模具課題適用)
機(jī)械加工工藝過程卡
(模具專業(yè)沖壓模具課題適用)
機(jī)械加工工藝過程卡片
產(chǎn)品型號
零(部)件圖號
產(chǎn)品名稱
零(部)件名稱
共( )頁第( )頁
材料牌號
毛坯
種類
毛坯外型尺寸
每個毛坯可制件數(shù)
每臺
件數(shù)
備注
工序號
工序名稱
工 序 內(nèi) 容
車間
工段
設(shè)備
工 藝 裝 備
工時
準(zhǔn)終
單件
設(shè)計日期
審核日期
標(biāo)準(zhǔn)化日期
會簽
日期
標(biāo)記
記數(shù)
更改文
件號
簽字
日期
標(biāo)記
處數(shù)
更該文件號
致謝
參考文獻(xiàn)
附件5:
畢業(yè)設(shè)計(論文)的內(nèi)容及裝訂程序
畢業(yè)設(shè)計說明書(論文)的內(nèi)容及裝訂程序依次為:
1.封面(含作者、論文題名、指導(dǎo)教師姓名、專業(yè)技術(shù)職務(wù)等)
2.摘要(含中、外文摘要及關(guān)鍵詞)
3.目錄
4.插圖和附表清單(需要時)
5.符號、標(biāo)志、縮略詞、首字母、術(shù)語等匯集表(需要時)
6.正文(含引言或緒論)
7.結(jié)論
8.致謝
9.參考文獻(xiàn)
10.附錄(需要時)
11.結(jié)尾部分(需要時)
INEEL/CON-2000-00104PREPRINTSpray-Formed Tooling for Injection Molding andDie Casting ApplicationsK. M. McHughB. R. WickhamJune 26, 2000 June 28, 2000International Conference on Spray Depositionand Melt AtomizationThis is a preprint of a paper intended for publication in ajournal or proceedings. Since changes may be madebefore publication, this preprint should not be cited orreproduced without permission of the author.This document was prepared as a account of worksponsored by an agency of the United States Government.Neither the United States Government nor any agencythereof, or any of their employees, makes any warranty,expressed or implied, or assumes any legal liability orresponsibility for any third partys use, or the results ofsuch use, of any information, apparatus, product orprocess disclosed in this report, or represents that itsuse by such third party would not infringe privatelyowned rights. The views expressed in this paper arenot necessarily those of the U.S. Government or thesponsoring agency.B E C H T E L B W X T I D A H O , L L C1Spray-Formed ToolingFor Injection Molding and Die Casting ApplicationsKevin M. McHugh and Bruce R. WickhamIdaho National Engineering and Environmental LaboratoryP.O. Box 1625Idaho Falls, ID 83415-2050e-mail: kmm4inel.govAbstractRapid Solidification Process (RSP) Tooling is a spray forming technology tailored forproducing molds and dies. The approach combines rapid solidification processing and net-shapematerials processing in a single step. The ability of the sprayed deposit to capture features of thetool pattern eliminates costly machining operations in conventional mold making and reducesturnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth,allowing many ferritic tool steels to be artificially aged, an alternative to conventional heattreatment that offers unique benefits. Material properties and microstructure transformationduring heat treatment of spray-formed H13 tool steel are described.IntroductionMolds, dies, and related tooling are used to shape many of the plastic and metal components weuse every day at home or at work. The process involves machining the negative of a desired partshape (core and cavity) from a forged tool steel or a rough metal casting, adding coolingchannels, vents, and other mechanical features, followed by grinding. Many molds and diesundergo heat treatment (austenitization/quench/temper) to improve the properties of the steel,followed by final grinding and polishing to achieve the desired finish 1.Conventional fabrication of molds and dies is very expensive and time consuming because: Each is custom made, reflecting the shape and texture of the desired part. The materials used to make tooling are difficult to machine and work with. Tool steels arethe workhorse of industry for long production runs. Machining tool steels is capitalequipment intensive because specialized equipment is often needed for individual machiningsteps. Tooling must be machined accurately. Oftentimes many individual components must fittogether correctly for the final product to function properly.2Costs for plastic injection molds vary with size and complexity, ranging from about $10,000 toover $300,000 (U.S.), and have lead times of 3 to 6 months. Tool checking and part qualificationmay require an additional 3 months. Large die-casting dies for transmissions and sheet metalstamping dies for making automobile body panels may cost more than $1million (U.S.). Leadtimes are usually greater than 40 weeks. A large automobile company invests about $1 billion(U.S.) in new tooling each year to manufacture the components that go into their new line of carsand trucks.Spray forming offers great potential for reducing the cost and lead time for tooling byeliminating many of the machining, grinding, and polishing unit operations. In addition, sprayforming provides a powerful means to control segregation of alloying elements duringsolidification and carbide formation, and the ability to create beneficial metastable phases inmany popular ferritic tool steels. As a result, relatively low temperature precipitation hardeningheat treatment can be used to tailor properties such as hardness, toughness, thermal fatigueresistance, and strength. This paper describes the application of spray forming technology forproducing H13 tooling for injection molding and die casting applications, and the benefits of lowtemperature heat treatment.RSP ToolingRapid Solidification Process (RSP) Tooling, is a spray forming technology tailored forproducing molds and dies 2-4. The approach combines rapid solidification processing and net-shape materials processing in a single step. The general concept involves converting a molddesign described by a CAD file to a tooling master using a suitable rapid prototyping (RP)technology such as stereolithography. A pattern transfer is made to a castable ceramic, typicallyalumina or fused silica (Figure 1). This is followed by spray forming a thick deposit of tool steel(or other alloy) on the pattern to capture the desired shape, surface texture and detail. Theresultant metal block is cooled to room temperature and separated from the pattern. Typically,the deposits exterior walls are machined square, allowing it to be used as an insert in a holdingblock such as a MUD frame 5. The overall turnaround time for tooling is about three days,stating with a master. Molds and dies produced in this way have been used for prototype andproduction runs in plastic injection molding and die casting.Figure 1. RSP Tooling processing steps.3An important benefit of RSP Tooling is that it allows molds and dies to be made early in thedesign cycle for a component. True prototype parts can be manufactured to assess form, fit, andfunction using the same process planned for production. If the part is qualified, the tooling can berun in production as conventional tooling would. Use of a digital database and RP technologyallows design modifications to be easily made.Experimental ProcedureAn alumina-base ceramic (Cotronics 780 6) was slurry cast using a silicone rubber master die,or freeze cast using a stereolithography master. After setting up, ceramic patterns weredemolded, fired in a kiln, and cooled to room temperature. H13 tool steel was induction meltedunder a nitrogen atmosphere, superheated about 100C, and pressure-fed into a bench-scaleconverging/diverging spray nozzle, designed and constructed in-house. An inert gas atmospherewithin the spray apparatus minimized in-flight oxidation of the atomized droplets as theydeposited onto the tool pattern at a rate of about 200 kg/h. Gas-to-metal mass flow ratio wasapproximately 0.5.For tensile property and hardness evaluation, the spray-formed material was sectioned using awire EDM and surface ground to remove a 0.05 mm thick heat-affected zone. Samples wereheat treated in a furnace that was purged with nitrogen. Each sample was coated with BN andplaced in a sealed metal foil packet as a precautionary measure to prevent decarburization.Artificially aged samples were soaked for 1 hour at temperatures ranging from 400 to 700C, andair cooled. Conventionally heat treated H13 was austenitized at 1010C for 30 min., airquenched, and double tempered (2 hr plus 2 hr) at 538C.Microhardness was measured at room temperature using a Shimadzu Type M Vickers HardnessTester by averaging ten microindentation readings. Microstructure of the etched (3% nital) toolsteel was evaluated optically using an Olympus Model PME-3 metallograph and an AmrayModel 1830 scanning electron microscope. Phase composition was analyzed via energy-dispersive spectroscopy (EDS). The size distribution of overspray powder was analyzed using aMicrotrac Full Range Particle Analyzer after powder samples were sieved at 200 m to removecoarse flakes. Sample density was evaluated by water displacement using Archimedes principleand a Mettler balance (Model AE100).A quasi 1-D computer code developed at INEEL was used to evaluate multiphase flow behaviorinside the nozzle and free jet regions. The codes basic numerical technique solves the steady-state gas flow field through an adaptive grid, conservative variables approach and treats thedroplet phase in a Lagrangian manner with full aerodynamic and energetic coupling between thedroplets and transport gas. The liquid metal injection system is coupled to the throat gasdynamics, and effects of heat transfer and wall friction are included. The code also includes anonequilibrium solidification model that permits droplet undercooling and recalescence. Thecode was used to map out the temperature and velocity profile of the gas and atomized dropletswithin the nozzle and free jet regions.4Results and DiscussionSpray forming is a robust rapid tooling technology that allows tool steel molds and dies to beproduced in a straightforward manner. Examples of die inserts are given in Figure 2. Each wasspray formed using a ceramic pattern generated from a RP master.Figure 2. Spray-formed mold inserts. (a) Ceramic pattern and H13 tool steel insert. (b) P20 toolsteel insert.Particle and Gas BehaviorParticle mass frequency and cumulative mass distribution plots for H13 tool steel sprays aregiven in Figure 3. The mass median diameter was determined to be 56 m by interpolation ofsize corresponding to 50% cumulative mass. The area mean diameter and volume meandiameter were calculated to be 53 m and 139 m, respectively. Geometric standard deviation,d=(d84/d16) , is 1.8, where d84 and d16 are particle diameters corresponding to 84% and 16%cumulative mass in Figure 3.5Figure 3. Cumulative mass and mass frequency plots of particles in H13 tool step sprays.Figure 4 gives computational results for the multiphase velocity flow field (Figure 4a), and H13tool steel solid fraction (Figure 4b), inside the nozzle and free jet regions. Gas velocity increasesuntil reaching the location of the shock front, at which point it precipitously decreases,eventually decaying exponentially outside the nozzle. Small droplets are easily perturbed by thevelocity field, accelerating inside the nozzle and decelerating outside. After reaching theirterminal velocity, larger droplets (150 m) are less perturbed by the flow field due to theirgreater momentum.It is well known that high particle cooling rates in the spray jet (103-106 K/s) and bulk deposit (1-100 K/min) are present during spray forming 7. Most of the particles in the spray haveundergone recalescence, resulting in a solid fraction of about 0.75. Calculated solid fractionprofiles of small (30 m) and large (150 m) droplets with distance from the nozzle inlet, areshown in Figure 4b.Spray-Formed DepositsThis high heat extraction rate reduces erosion effects at the surface of the tool pattern. Thisallows relatively soft, castable ceramic pattern materials to be used that would not be satisfactorycandidates for conventional metal casting processes. With suitable processing conditions, fine6Figure 4. Calculated particle and gas behavior in nozzle and free jet regions. (a) Velocity profile.(b) Solid fraction.7surface detail can be successfully transferred from the pattern to spray-formed mold. Surfaceroughness at the molding surface is pattern dependent. Slurry-cast commercial ceramics yield asurface roughness of about 1 m Ra, suitable for many molding applications. Deposition of toolsteel onto glass plates has yielded a specular surface finish of about 0.076 m Ra. At the currentstate of development, dimensional repeatability of spray-formed molds, starting with a commonmaster, is about 0.2%.ChemistryThe chemistry of H13 tool steel is designed to allow the material to withstand the temperature,pressure, abrasion, and thermal cycling associated with demanding applications such as diecasting. It is the most popular die casting alloy worldwide and second most popular tool steel forplastic injection molding. The steel has low carbon content (0.4 wt.%) to promote toughness,medium chromium content (5 wt%) to provide good resistance to high temperature softening,1 wt% Si to improve high temperature oxidation resistance, and small molybdenum andvanadium additions (about 1%) that form stable carbides to increase resistance to erosive wear8. Composition analysis was performed on H13 tool steel before and after spray forming.Results, summarized in Table 1, indicate no significant variation in alloy additions.Table 1. Composition of H13 tool steelElementCMnCrMoVSiFeStock H130.410.395.151.410.91.06Bal.Spray Formed H130.410.385.101.420.91.08Bal.MicrostructureThe size, shape, type, and distribution of carbides found in H13 tool steel is dictated by theprocessing method and heat treatment. Normally the commercial steel is machined in the millannealed condition and heat treated (austenitized/quenched/tempered) prior to use. It is typicallyaustenitized at about 1010C, quenched in air or oil, and carefully tempered two or three times at540 to 650C to obtain the required combination of hardness, thermal fatigue resistance, andtoughness.Commercial, forged, ferritic tool steels cannot be precipitation hardened because after electroslagremelting at the steel mill, ingots are cast that cool slowly and form coarse carbides. In contrast,rapid solidification of H13 tool steel causes alloying additions to remain largely in solution andto be more uniformly distributed in the matrix 9-11. Properties can be tailored by artificialaging or conventional heat treatment.A benefit of artificial aging is that it bypasses the specific volume changes that occur duringconventional heat treatment that can lead to tool distortion. These specific volume changes occuras the matrix phase transforms from ferrite to austenite to tempered martensite and must beaccounted for in the original mold design. However, they cannot always be reliably predicted.Thin sections in the insert, which may be desirable from a design and production standpoint, areoftentimes not included as the material has a tendency to slump during austenitization or distort8during quenching. Tool distortion is not observed during artificial aging of spray-formed toolsteels because there is no phase transformation.An optical photomicrograph of spray-formed H13 is shown in Figure 5 together with an SEMimage, in backscattered electron (BSE) mode. Energy dispersive spectroscopic (EDS)composition analysis of some features in the photomicrographs is also given. While exactquantitative data is not possible due to sampling volume limitations, results suggest that grainboundaries are particularly rich in V. Intragranular (matrix) regions are homogeneous and richin Fe. X-ray diffraction analysis indicates that the matrix phase is primarily ferrite (bainite) withvery little retained austenite, and that the alloying elements are largely in solution. Discreteintragranular carbides are relatively rare, very small (about 0.1 m) and predominatelyvanadium-rich MC carbides. M2C carbides are not observed.ElementSiVCrMnMoFeSpot #1 (wt%)0.6132.136.680.172.0558.36Spot #2 (wt%)1.590.795.350.282.2889.72Figure 5. Photomicrographs of as-deposited H13 tool steel. 3% nital etch. (a) Opticalphotomicrograph. (b) SEM image (BSE mode) near a grain boundary. Table gives EDScomposition of numbered features.9Figure 6 illustrates the microstructure of spray-formed H13 aged at 500C for 1 hr. Duringaging, grain boundaries remain well defined, perhaps coarsening slightly compared to as-deposited H13 (Figure 5). The most prominent change is the appearance of very fine (0.1 mdiameter) vanadium-rich MC carbide precipitates. The precipitates are uniformly distributedthroughout the matrix and increase the hardness and wear resistance of the tool steel.Increasing the soak temperature to 700C results in prominent carbide coarsening, the formationof M7C3 and M6C carbides, and a decrease in hardness. The photomicrographs of Figure 7illustrate the dramatic change in carbide size. BSE imaging clearly differentiates Mo/Cr-richcarbides from V-rich carbides, shown as light and dark areas, respectively, in Figure 7. EDSanalysis of these carbides is also given in Figure 7.ElementSiVCrMnMoFeSpot #1 (wt%)0.0613.807.202.642.4473.86Spot #2 (wt%)1.520.825.480.232.3889.57Figure 6. Photomicrographs of spray-formed/aged H13 tool steel. 500C soak for 1 hr. 3% nitaletch. (a) Optical photomicrograph. (b) SEM image (BSE mode) near a grain boundary. Tablegives EDS composition of numbered features.10ElementSiVCrMnMoFeSpot #1 (wt%)082.279.0104.334.39Spot #2 (wt%)05.3025.70055.5513.45Spot #3 (wt%)1.600.886.320.282.9288.00Figure 7. SEM Photomicrograph (BSE mode) of spray-formed/aged H13 tool steel showingadjacent V-rich (dark) and Mo/Cr-rich (light) carbides. 700C soak for 1/2 hr, 3% nital etch.Table gives EDS composition of numbered features.Material PropertiesPorosity in spray-formed metals depends on processing conditions. The average as-depositeddensity of spray-formed H13 was 98-99% of theoretical, as measured by water displacementusing Archimedes principle.As-deposited hardness was typically about 59 HRC, harder than commercial forged and heattreated material (28 to 53 HRC depending on tempering temperature), and significantly harderthan annealed H13 (200 HB). The high hardness is attributable to lattice strain due to quenchingstresses and supersaturation.As shown in Figure 8, hardness can be varied over a wide range by artificial aging. 59 HRC as-deposited samples were given isochronal (1 hr) soaks at 50C increments from 400 to 700C, aircooled, and evaluated for microhardness. At 400C, a small decrease in hardness was observed,presumably due to stress relieving. As the soak temperature was further increased, hardness roseto a peak hardness of approximately 62 HRC at 500C. Higher soak temperature resulted in adrop in hardness as carbide particles coarsened.Peak age hardness in spray-formed H13 tool steel is notably higher than that of commercialhardened material. Normally, commercial H13 dies used in die casting are tempered to about 40to 45 HRC as a tradeoff since high hardness dies, while desirable for wear resistance, are proneto premature failure via thermal fatigue as the dies surface is rapidly cycled from 300C to700C during aluminum production runs.11Figure 8. Hardness of artificially aged spray-formed H13 tool steel following one hour soaks attemperature. Hardness range of conventionally heat treated H13 included for comparison.As-deposited spray-formed material was also hardened following the conventional heat treatmentcycle used with commercial material. Samples of forged/mill annealed commercial and spray-formed materials were austenitized at 1010C, air quenched, and double tempered (2 hr plus2 hr) at (538C). The microstructure in both cases was found to be tempered martensite with afew spheroidal particles of alloy carbide. Hardness values for both materials were very nearlyidentical.Table 2 gives the ultimate tensile strength and yield strength of spray-formed, cast, andforged/heat treated H13 tool steel measured at test temperatures of 22 and 550C. Values forspray formed H13 are given in the as-deposited condition and following artificial aging andconventional heat treatments. Values for the spray-formed material are comparable to those offorged and are considerably higher than those of cast tool steel. The spray-formed material seemsto retain its strength somewhat better than forged/heat treated H13 at higher temperatures.12Table 2. H13 tool steel mechanical properties.Sample/Heat TreatmentUltimateTensile Strength(MPa)YieldStrength(MPa)TestTemperature(C)Spray formed/as-deposited106195122Spray formed /aged at 540C1964188122Spray formed /aged at 540C16471475550Spray formed /conventional heat treatment*1358115822Cast60022Cast/conventional heat treatment*88222Commercial forged/ heat treated*1799168122Commercial forged/ heat treated*13231247550* austenitized at 1010C, double tempered (2hr+ 2hr) at 590C. no yield at 0.2% offset.Summary Spray forming is a r
收藏