《湖南省中考數(shù)學復習 第5單元 三角形 第21課時 等腰三角形與直角三角形課件》由會員分享,可在線閱讀,更多相關《湖南省中考數(shù)學復習 第5單元 三角形 第21課時 等腰三角形與直角三角形課件(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第五單元 三角形第21課時 等腰三角形與直角三角形考綱考點考綱考點等腰三角形的有關計算2016年6考,2015年8考,2014年10考;直角三角形的有關計算2016年8考,2015年9考,2014年8考,預測2017年湖南中考各市仍將考查等腰三角形的性質成或直角三角形的性質.江西中考2013年考查了一道綜合解答題,其他年份都是與其他知識結合考查,如2014年第11題,2015年第13、14、20、23、24題中都有直角三角形、等腰三角形、勾股定理等知識點,2016年考查了勾股定理在等腰三角形的應用,預測2017年江西中考本課時知識仍會結合其他知識綜合考查.知識體系圖知識體系圖等腰三角形與直角三
2、角形等腰三角形等邊三角形直角三角形線段垂直平分線角的平分線性質判定性質判定性質判定性質勾股定理及其逆定理判定性質定義5.3.1 等腰三角形的概念和性質等腰三角形的概念和性質(1)定義:有兩邊相等的三角形是等腰三角形(2)性質:等腰三角形兩個腰相等; 等腰三角形的兩個底角相等(簡寫成等邊對等角); 等腰三角形的頂角平分線,底邊上的中線,底邊上的高線互相重合; 等腰三角形是軸對稱圖形,有一條對稱軸.5.3.2 等腰三角形的判定等腰三角形的判定(1)定義法(2)如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.(簡寫為“等角對等邊”)5.3.3 等邊三角形的性質及判定等邊三角形的性質及判定(1
3、)等邊三角形的性質: 等邊三角形的三條邊相等 等邊三角形的每個角都等于60. 等邊三角形是軸對稱圖形,并且有三條對稱軸.(2)等邊三角形的判定: 三條邊相等的三角形叫做等邊三角形; 三個角相等的三角形是等邊三角形; 有一個角等于60的等腰三角形是等邊三角形5.3.4 線段垂直平分線線段垂直平分線(1)性質:線段中垂線上的點到這條線段兩端的距離相等(2)判定:到一條線段的兩個端點距離相等的點在中垂線上,線段的中垂線可以看作是到線段兩端距離相等的點的集合.5.3.5 角平分線的性質及判定角平分線的性質及判定(1)性質:角平分線上的點到角的兩邊的距離相等.(2)判定:到角的兩邊的距離相等的點在角的平
4、分線上.5.3.6 直角三角形的性質及判定直角三角形的性質及判定(1)性質:直角三角形的兩個銳角互余.直角三角形斜邊上的中線等于斜邊的一半.在直角三角形中,如果有一個銳角等于30,那么它所對的直角邊等于斜邊的一半.直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即a2+b2=c2(勾股定理).(2)判定:有一個角是直角或兩個銳角互余的三角形是直角三角形.如果三角形一邊上的中線等于這條邊的一半,那么這個三角形為直角三角形.如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形.(勾股定理的逆定理)如圖,ABC與ABC都是等腰三角形,且AB=AC=5,AB=AC=3,若B+B=90,
5、則ABC與ABC的面積比為 ( A ) A25:9 B5:3 C D.35:3355:解:過A 作ADBC于D,過A作ADBC于D, ABC與ABC都是等腰三角形, B=C,B=C,BC=2BD,BC=2BD, AD=ABsinB,AD=ABsinB,BC=2BD=2ABcosB,BC=2BD=2ABcosB, B+B=90, sinB=cosB,sinB=cosB,SBAC=0.5ADBC=0.5ABsinB2ABcosB=25sinBcosB,SABC=0.5ADBC=ABcosB2ABsinB=9sinBcosB, SBAC:SABC=25:9故選A.如圖,在ABC中,AB=10,B=6
6、0,點D、E分別在AB、BC上,且BD=BE=4,將BDE沿DE所在直線折疊得到BDE(點B在四邊形ADEC內),連接AB,則AB的長為_ .過點B作BFAD,垂足為F,因為BD=BE=4,B=60,所以BDE是等邊三角形.由折疊的性質可得DB=BD=4,BDE=BDE=60,所以ADB=60,所以在RtBFD中,DF=2,BF= .因為AB=10,所以AF=4,所以7232.723242222FBAFAB如圖,OP平分AOB,AOP=15,PCOA,OAPD于點D,PC=4 ,則,PD= 2 . 過點P作PEOB于點E.OP平分AOB,PD=PE,AOB=2AOP=30.PCOA,ECP=AOB=30,PE=0.5PC=2,PD=PE=2.如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點,AE=5,現(xiàn)要剪下一張等腰三角形紙片(AEP),使點P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是 或5或 .據(jù)題意,如果點P落在AD邊上,則AE=AP=5,底邊長PE2=AP2+AE2=52+52=50,PE= ;如果點P落在DC邊上,則底邊長AE=5;如果點P落在BC邊上,則兩條腰AE=EP=5,底邊 .所以等腰三角形AEP的底邊長是 或5或 .25,4352222EBEPBP54482222BPABAP25542554