湖北省荊州市沙市第五中學高中數學 3.1.2導數的概念課件 新人教A版選修11

上傳人:無*** 文檔編號:51695969 上傳時間:2022-01-29 格式:PPT 頁數:25 大?。?,012.51KB
收藏 版權申訴 舉報 下載
湖北省荊州市沙市第五中學高中數學 3.1.2導數的概念課件 新人教A版選修11_第1頁
第1頁 / 共25頁
湖北省荊州市沙市第五中學高中數學 3.1.2導數的概念課件 新人教A版選修11_第2頁
第2頁 / 共25頁
湖北省荊州市沙市第五中學高中數學 3.1.2導數的概念課件 新人教A版選修11_第3頁
第3頁 / 共25頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《湖北省荊州市沙市第五中學高中數學 3.1.2導數的概念課件 新人教A版選修11》由會員分享,可在線閱讀,更多相關《湖北省荊州市沙市第五中學高中數學 3.1.2導數的概念課件 新人教A版選修11(25頁珍藏版)》請在裝配圖網上搜索。

1、3.1.23.1.2導數的概念導數的概念高二數學高二數學 選修選修1-11-11 1、平均變化率、平均變化率 )(xf一般的,函數在區(qū)間上一般的,函數在區(qū)間上 的的平均變化率平均變化率為為 ,21xx xxfxxf)()(222121xxxfxf一一.復習復習 其幾何意義是其幾何意義是 表示曲線上兩點連線(就是表示曲線上兩點連線(就是曲線的割線)的斜率。曲線的割線)的斜率。 在高臺跳水運動中,運動員相對于水面的高在高臺跳水運動中,運動員相對于水面的高度為度為h(單位:(單位:m)與起跳后的時間)與起跳后的時間t(單位:單位:s )存在函數關系存在函數關系h=-4.9t2+6.5t+10hto求

2、求2時的瞬時速度?時的瞬時速度?2我們先考察我們先考察2附近的情況。附近的情況。任取一個時刻任取一個時刻2,是時間改變量,可以是正值,是時間改變量,可以是正值,也可以是負值,但不為也可以是負值,但不為0.當當0時,在時,在2之前;之前;當當0時,在時,在2之后。之后。0時時20時時2二二.新授課學習新授課學習2,22,2,.ttv計算區(qū)間和區(qū)間內平均速度 可以得到如下表格t0時時, 在在2, 2 +t 這段時這段時間內間內1 .139 . 4tv1 .139 . 4tv13.051v 當t = 0.01時,13.149v 當t = 0.01時,0951.13v當t = 0.001時,1049.

3、13v當t =0.001時,13.09951v 當t = 0.0001時,13.10049v 當t =0.0001時,099951.13vt = 0.00001,100049.13vt = 0.00001,13.0999951v t = 0.000001,13.1000049v t =0.000001, 平均變化率近似地刻畫了曲線在某一區(qū)間上的變化趨平均變化率近似地刻畫了曲線在某一區(qū)間上的變化趨勢勢.l如何精確地刻畫曲線在一點處的變化趨勢呢如何精確地刻畫曲線在一點處的變化趨勢呢?105 . 69 . 4)(2ttth當當t趨近于趨近于0時時,平均平均速度有什么變化趨勢速度有什么變化趨勢?,0,

4、2,22,13.1.tt 我們發(fā)現 當趨近于 時 即無論 從小于 的一邊還是從大于 一邊趨近于 時 平均速度都趨近于一個確定的值,|,2.,213.1/ .tvttm s 從物理的角度看 時間間隔無限變小時 平均速度 就無限趨近于時的瞬時速度因此 運動員在時的瞬時速度是 .,.lim,11302113220 定值趨近于確平均速度時趨勢近于當表示我們用為了表述方便vttththt .時的極限時的極限趨近于趨近于當當是是我們稱確定值我們稱確定值022113tthth 瞬時速度0limt 在局部以平均速度代替瞬時速度,然后通過在局部以平均速度代替瞬時速度,然后通過取極取極限,從瞬時速度的近似值過渡到

5、瞬時速度的精確值。限,從瞬時速度的近似值過渡到瞬時速度的精確值。思考:思考:如何求瞬時速度?如何求瞬時速度?lim是什么意思?是什么意思?在其下面的條件下求右面的極限值。在其下面的條件下求右面的極限值。運動員在某一時刻運動員在某一時刻0的瞬時速度如何表示的瞬時速度如何表示?0limt(2)(2)13.1htht 示?處的瞬時變化率怎么表在、函數xxfxxflimxylimxf0 x0 x0即:、函數的平均變化率怎么表示?、函數的平均變化率怎么表示?思考:0 xlim 000 xxyxfxxxfy或記作:處的導數,在我們稱它為函數定義定義:函數函數 y = f (x) 在在 x = x0 處的瞬

6、時變化率是處的瞬時變化率是xxxfxxfxx ylim )()(lim 0000稱為函數稱為函數 y = f (x) 在在 x = x0 處的處的導數導數, 記作記作0000( )() ()lim. xf xxf xfxx )(0 xf 或或 , 即即0|xxy。其導數值一般也不相同的值有關,不同的與000)(. 1xxxf 的具體取值無關。與 xxf)(. 20一概念的兩個名稱。瞬時變化率與導數是同. 3導數的作用:導數的作用:在例在例2中,高度中,高度h關于時間關于時間t的導數是運動員的的導數是運動員的瞬時速度;瞬時速度;在例在例1中,我們用的是平均膨脹率,那么半徑中,我們用的是平均膨脹率

7、,那么半徑r關于體積關于體積v的導數是氣球的的導數是氣球的瞬時膨脹率瞬時膨脹率導數可以描繪任何事物的瞬時變化率導數可以描繪任何事物的瞬時變化率 由導數的意義可知由導數的意義可知,求函數求函數y=f(x)在點在點x0處的導數處的導數的基本方法是的基本方法是:);()()1(00 xfxxfy 求求函函數數的的增增量量;)()()2(00 xxfxxfxy 求求平平均均變變化化率率.lim)()3(00 xyxfx 取取極極限限,得得導導數數注意注意:這里的增量不是一般意義上的增量這里的增量不是一般意義上的增量,它可正也可負它可正也可負. 自變量的增量自變量的增量x的形式是多樣的的形式是多樣的,但

8、不論但不論x選擇選擇 哪種形式哪種形式, y也必須選擇與之相對應的形式也必須選擇與之相對應的形式.一差、二比、三極限一差、二比、三極限例例1. (1)求函數求函數y=3x2在在x=1處的導數處的導數.(2)求函數求函數f(x)=-x2+x在在x=-1附近的平均附近的平均變化率,并求出在該點處的導數變化率,并求出在該點處的導數 (3)質點運動規(guī)律為質點運動規(guī)律為s=t2+3,求,求質點在質點在t=3的瞬時速度的瞬時速度.三典例分析三典例分析題型二:求函數在某處的導數題型二:求函數在某處的導數例例1. (1)求函數求函數y=3x2在在x=1處的導數處的導數.三典例分析三典例分析題型二:求函數在某處

9、的導數題型二:求函數在某處的導數(1)(1)yfxf解:23(1)3x263()xx263()yxxxx63 x/00(1)limlim(63)6xxyfxx例例1.(2)求函數求函數f(x)=-x2+x在在x=-1附近的平均變附近的平均變化率,并求出在該點處的導數化率,并求出在該點處的導數 三典例分析三典例分析題型二:求函數在某處的導數題型二:求函數在某處的導數( 1)( 1)yfxf 解:22( 1)( 1) ( 1)( 1)xx 2()3xx 2()3yxxxx平均變化率3x /00( 1)limlim(3)3xxyfxx例例1.(3)質點運動規(guī)律為質點運動規(guī)律為s=t2+3,求質點在,

10、求質點在t=3的瞬時速度的瞬時速度.三典例分析三典例分析題型二:求函數在某處的導數題型二:求函數在某處的導數(3)(3)sftf解:22(3)3(33)t 2()6tt2()6stttt6t/00(3)limlim(6)6ttsftt例例1:(1)求函數求函數y=x2在在x=1處的導數處的導數; (2)求函數求函數y=x+1/x在在x=2處的導數處的導數.,)(21)1 () 1 (222xxxy 解解:,2)(22xxxxxy . 2|, 2)2(limlim100 xxxyxxy,)2( 2)212(21)2() 2(xxxxxy ,)2( 211)2( 2xxxxxxy .43|,434

11、11)2( 211 limlim200 xxxyxxy.,21| ,:2000的的值值求求且且處處附附近近有有定定義義在在已已知知函函數數例例xyxxxyxx ,:00 xxxy 解解.1)()(0000000000 xxxxxxxxxxxxxxxxxxy ,211limlim00000 xxxxxyxx . 1,2121,21| 000 xxyxx得得由由.yxy已知,求1yxxxx 0011limlim.2xxyyxxxxx 練習練習:xyxxxxxxDD=+ D-=+ D+解:.)0( |2的的導導數數數數:利利用用導導數數的的定定義義求求函函例例 xxy|,yx解:0,xyx 當時.0

12、101 xxy0,xyx當時()1,yxxxxx則0lim1;xyx ()()1,yxxxxx 0lim1;xyx .,62).80(157:,.,220并說明它們的意義的瞬時變化率原油溫度時和第計算第為單位的溫度原油時如果在和加熱行冷卻油進對原需要品產柴油、塑膠等各種不同將原油精煉為汽油、例hhxxxxfCxh,根據導數的定義 xfxfxy22 .6f和 262,fhh就是原油溫度的瞬時變化率時和第在第解 xxx152721527222 , 3742 xxxxx , 33limlim2,00 xxyfxx所以 .56 f同理可得.運運算算過過程程請請同同學學們們自自己己完完成成具具體體002

13、6,35.2,3/;6,5/.hhhC hhC h在第與第時 原油溫度的瞬時變化率分別為與它說明:在第附近 原油溫度大約以的速率下降在附近 原油溫度大約以的速率上升00,.fxx一般地反映了原油溫度在時刻 附近的變化情況計算第計算第3(h)和第)和第5(h)時,原油溫度的瞬時)時,原油溫度的瞬時變化率,并說明它們的意義。變化率,并說明它們的意義。 35f 13f)(,解:這說明這說明:在第在第3小時附近,原油溫度大約以小時附近,原油溫度大約以1的速率下降,的速率下降,在第在第5小時附近,小時附近,原油溫度大約以原油溫度大約以3的速率上升。的速率上升。練習:練習:小結:小結: 1 1求物體運動的

14、瞬時速度:求物體運動的瞬時速度:(1 1)求位移增量)求位移增量s=s(t+t)-s(ts=s(t+t)-s(t) ) (2) (2)求平均速度求平均速度(3 3)求極限)求極限;svt00()( ).limlimxxss tts ttt 2由導數的定義可得求導數的一般步驟:由導數的定義可得求導數的一般步驟:(1)求函數的增量)求函數的增量y=f(x0+t)-f(x0) (2) 求平均變化率求平均變化率(3)求極限)求極限yx00()limxyfxx 思考:思考: 物體作自由落體運動物體作自由落體運動,運動方程為:運動方程為: 其中位移單位是其中位移單位是m,時間單位是時間單位是s,g=10m

15、/s2.求:求: (1) 物體在時間區(qū)間物體在時間區(qū)間2,2.1上的平均速度;上的平均速度; (2) 物體在時間區(qū)間物體在時間區(qū)間2,2.01上的平均速度;上的平均速度; (3) 物體在物體在t=2(s)時的瞬時速度時的瞬時速度. 221gts 分析分析:_00()( )12()2s tts tsvggttt 2001()( )2()2ss tts tg tgt 解解:)(212_tggtsv s ss(2+t)Os(2)(1)將將 t=0.1代入上式,得代入上式,得: ./5 .2005. 2_smgv (2)將將 t=0.01代入上式,代入上式,得得: ./05.20005. 2_smgv 的的極極限限為為:從從而而平平均均速速度度當當_, 22 , 0)3(vtt ./202limlim0_0smgtsvvtt

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!