《高考數(shù)學一輪復習 第3講 全稱量詞與存在量詞 、邏輯聯(lián)結詞“且”“或”“非”課件 理 北師大版》由會員分享,可在線閱讀,更多相關《高考數(shù)學一輪復習 第3講 全稱量詞與存在量詞 、邏輯聯(lián)結詞“且”“或”“非”課件 理 北師大版(19頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、考點突破考點突破夯基釋疑夯基釋疑 考點一考點一 考點三考點三 考點二考點二 例例 1訓練訓練1 例例 2訓練訓練2 例例 3訓練訓練3第第3講講 全稱量詞與存在量詞全稱量詞與存在量詞 、邏輯聯(lián)、邏輯聯(lián)結詞結詞“且且”“”“或或”“”“非非”概要概要課堂小結課堂小結夯基釋疑夯基釋疑判斷正誤判斷正誤(在括號內(nèi)打在括號內(nèi)打“”“”或或“”)(1)命題命題pq為假命題,則命題為假命題,則命題p,q都是假命題都是假命題( )(2)若命題若命題p,q至少有一個是真命題,則至少有一個是真命題,則pq是真命題是真命題( )(3)已知命題已知命題p:n0N,2n01 000,則,則p:n0N,2n01 000.
2、( )(4)命題命題“xR,x20”的否定是的否定是“xR,x20”.”.( )【例【例1】 (1)(2014遼寧卷遼寧卷)設設a,b,c是非零向量已知命題是非零向量已知命題p:若若ab0,bc0,則,則ac0;命題;命題q:若:若ab,bc,則,則ac.則下列命題中真命題是則下列命題中真命題是()Apq Bpq C(p)(q) Dp(q)(2)在一次跳傘訓練中,甲、乙兩位學員各跳一次設命題在一次跳傘訓練中,甲、乙兩位學員各跳一次設命題p是是“甲降落在指定范圍甲降落在指定范圍”,q是是“乙降落在指定范圍乙降落在指定范圍”,則命題,則命題“至少有一位學員沒有降落在指定范圍至少有一位學員沒有降落在
3、指定范圍”可表示為可表示為()A(p)(q) Bp(q) C(p)(q) Dpq考點突破考點突破考點一考點一含有邏輯聯(lián)結詞的命題及其真假判斷含有邏輯聯(lián)結詞的命題及其真假判斷一位或多位一位或多位解析解析(1)由于由于a,b,c都是非零向量,都是非零向量,ab0, ab.bc0, bc.如圖,如圖,則可能則可能ac,ac0,命題命題p是假命題,是假命題,p是真命題是真命題命題命題q中,中,ab,則,則a與與b方向相同或相反;方向相同或相反;bc,則,則b與與c方向相同或相反方向相同或相反考點突破考點突破ac,即,即q是真命題,是真命題,則則q是假命題,是假命題,故故pq是真命題,是真命題,pq,(
4、p)(q),p(q)都是假命題都是假命題考點一考點一含有邏輯聯(lián)結詞的命題及其真假判斷含有邏輯聯(lián)結詞的命題及其真假判斷故故a與與c方向相同或相反,方向相同或相反,【例【例1】 (1)(2014遼寧卷遼寧卷)設設a,b,c是非零向量已知命題是非零向量已知命題p:若若ab0,bc0,則,則ac0;命題;命題q:若:若ab,bc,則,則ac.則下列命題中真命題是則下列命題中真命題是()Apq Bpq C(p)(q) Dp(q)(2)在一次跳傘訓練中,甲、乙兩位學員各跳一次設命題在一次跳傘訓練中,甲、乙兩位學員各跳一次設命題p是是“甲降落在指定范圍甲降落在指定范圍”,q是是“乙降落在指定范圍乙降落在指定
5、范圍”,則命題,則命題“至少有一位學員沒有降落在指定范圍至少有一位學員沒有降落在指定范圍”可表示為可表示為()A(p)(q) Bp(q) C(p)(q) Dpq一位或多位一位或多位考點突破考點突破(2)命題命題“至少有一位學員沒有降落在指定范圍至少有一位學員沒有降落在指定范圍”包含以下三包含以下三種種情況:情況:“甲、乙均沒有降落在指定范圍甲、乙均沒有降落在指定范圍”“甲降落在指定范圍甲降落在指定范圍,乙,乙沒有降落在指定范圍沒有降落在指定范圍”“乙降落在指定范圍乙降落在指定范圍,甲,甲沒有降落在指定范圍沒有降落在指定范圍”選選A或者或者,命題,命題“至少有一位學員沒有降落在指定范圍至少有一位
6、學員沒有降落在指定范圍”等價等價于命題于命題“甲、乙均降落在指定范圍甲、乙均降落在指定范圍”的否命題的否命題,即即“pq”的否定選的否定選A答案答案(1)A(2)A考點一考點一含有邏輯聯(lián)結詞的命題及其真假判斷含有邏輯聯(lián)結詞的命題及其真假判斷【例【例1】(2)在一次跳傘訓練中,甲、乙兩位學員各跳一次設命在一次跳傘訓練中,甲、乙兩位學員各跳一次設命題題p是是“甲降落在指定范圍甲降落在指定范圍”,q是是“乙降落在指定范圍乙降落在指定范圍”,則,則命題命題“至少有一位學員沒有降落在指定范圍至少有一位學員沒有降落在指定范圍”可表示為可表示為()A(p)(q) Bp(q) C(p)(q) Dpq一位或多位
7、一位或多位考點突破考點突破規(guī)律方法規(guī)律方法若要判斷一個含有邏輯聯(lián)結詞的命題的真假,需先判斷若要判斷一個含有邏輯聯(lián)結詞的命題的真假,需先判斷構成這個命題的每個簡單命題的真假,再依據(jù)構成這個命題的每個簡單命題的真假,再依據(jù)“或或”一真即真,一真即真,“且且”一假即假,一假即假,“非非”真假相真假相對,做出判斷即可對,做出判斷即可考點一考點一含有邏輯聯(lián)結詞的命題及其真假判斷含有邏輯聯(lián)結詞的命題及其真假判斷考點突破考點突破解析解析(1)因為函數(shù)因為函數(shù)yx22x的單調(diào)遞增區(qū)間是的單調(diào)遞增區(qū)間是1,),所以所以p是真命題;是真命題;考點一考點一含有邏輯聯(lián)結詞的命題及其真假判斷含有邏輯聯(lián)結詞的命題及其真假
8、判斷所以所以q是假命題是假命題所以所以pq為假命題,為假命題,pq為真命題,為真命題,p為假命題,為假命題,q為真命題,為真命題,故選故選D深度思考深度思考常常借助集合的常常借助集合的“并、交、并、交、補補”的意義來理解由的意義來理解由“或、或、且、非且、非”三個聯(lián)結詞構成的三個聯(lián)結詞構成的命題問題,你清楚嗎?命題問題,你清楚嗎?考點突破考點突破(2)若命題若命題“p或或q”為真命題,為真命題,則則p,q中至少有一個為真命題中至少有一個為真命題若命題若命題“p且且q”為真命題,為真命題,則則p,q都為真命題,都為真命題,因此因此“p或或q”為真命題是為真命題是“p且且q”為真命題的必要不充分條
9、件為真命題的必要不充分條件答案答案(1)D(2)必要不充分必要不充分考點一考點一含有邏輯聯(lián)結詞的命題及其真假判斷含有邏輯聯(lián)結詞的命題及其真假判斷考點突破考點突破考點二考點二全全(特特)稱命題的否定及其真假判定稱命題的否定及其真假判定解析解析(1)全稱命題的否定是特稱命題,全稱命題的否定是特稱命題,(2) xR,x20,故,故A錯;錯; xR,1sin x1,故,故B錯;錯; xR,2x0,故,故C錯,故選錯,故選D答案答案(1)C(2)D故選故選C考點突破考點突破規(guī)律方法規(guī)律方法(1)(1)對全對全( (特特) )稱命題進行否定的方法稱命題進行否定的方法找到命題所含的量詞,沒有量詞的要結合命題
10、的含義加上找到命題所含的量詞,沒有量詞的要結合命題的含義加上量詞,再進行否定量詞,再進行否定對原命題的結論進行否定對原命題的結論進行否定(2)(2)判定全稱命題判定全稱命題“xM,p(x)”是真命題,需要對集合是真命題,需要對集合M中中的每個元素的每個元素x,證明,證明p(x)成立;要判斷特稱命題是真命題,只成立;要判斷特稱命題是真命題,只要在限定集合內(nèi)至少能找到一個要在限定集合內(nèi)至少能找到一個xx0,使,使p(x0)成立成立考點二考點二全全(特特)稱命題的否定及其真假判定稱命題的否定及其真假判定考點突破考點突破考點二考點二全全(特特)稱命題的否定及其真假判定稱命題的否定及其真假判定解析解析(
11、1)“存在實數(shù)存在實數(shù)x,使,使x1”的否定是的否定是“對任意實數(shù)對任意實數(shù)x,都有,都有x1”故選故選C【訓練【訓練2】 (1)命題命題“存在實數(shù)存在實數(shù)x,使,使x1”的否定是的否定是()A對任意實數(shù)對任意實數(shù)x,都有,都有x1 B不存在實數(shù)不存在實數(shù)x,使,使x1C對任意實數(shù)對任意實數(shù)x,都有,都有x1 D存在實數(shù)存在實數(shù)x,使,使x1考點突破考點突破故命題故命題p1是假命題;是假命題;考點二考點二全全(特特)稱命題的否定及其真假判定稱命題的否定及其真假判定考點突破考點突破命題命題p4是真命題是真命題答案答案(1)C(2)D考點二考點二全全(特特)稱命題的否定及其真假判定稱命題的否定及其
12、真假判定考點突破考點突破解析解析依題意知,依題意知,p,q均為假命題均為假命題當當p是假命題時,是假命題時,mx210恒成立,則有恒成立,則有m0;當當q是假命題時,則有是假命題時,則有m240,m2或或m2.考點三考點三與邏輯聯(lián)結詞、全與邏輯聯(lián)結詞、全(特特)稱命題有關的參數(shù)問題稱命題有關的參數(shù)問題【例【例3】 已知已知p:xR,mx210,q:xR,x2mx10,若,若pq為假命題,則實數(shù)為假命題,則實數(shù)m的取值范圍是的取值范圍是()A2,) B(,2C(,22,) D2,2即即m2.答案答案A考點突破考點突破規(guī)律方法規(guī)律方法以命題真假為依據(jù)求參數(shù)的取值范圍時,首先要對兩個簡以命題真假為依
13、據(jù)求參數(shù)的取值范圍時,首先要對兩個簡單命題進行化簡,然后依據(jù)單命題進行化簡,然后依據(jù)“pq”“pq”“p”形式命題形式命題的真假,列出含有參數(shù)的不等式的真假,列出含有參數(shù)的不等式( (組組) )求解即可求解即可考點三考點三與邏輯聯(lián)結詞、全與邏輯聯(lián)結詞、全(特特)稱命題有關的參數(shù)問題稱命題有關的參數(shù)問題考點突破考點突破解析解析若命題若命題“pq”是真命題,是真命題,那么命題那么命題p,q都是真命題都是真命題由由x0,1,aex,得,得ae;由由xR,使,使x24xa0,知知164a0,a4,因此因此ea4.答案答案e,4【訓練【訓練3】 已知命題已知命題p:“x0,1,aex”;命題;命題q:“
14、xR,使得,使得x24xa0”若命題若命題“pq”是真命題,是真命題,則實數(shù)則實數(shù)a的取值范圍是的取值范圍是_考點三考點三與邏輯聯(lián)結詞、全與邏輯聯(lián)結詞、全(特特)稱命題有關的參數(shù)問題稱命題有關的參數(shù)問題1把握含邏輯聯(lián)結詞的命題的形式,特別是字面上未出現(xiàn)把握含邏輯聯(lián)結詞的命題的形式,特別是字面上未出現(xiàn)“或或”、“且且” 、“非非”字眼,要結合語句的含義理解字眼,要結合語句的含義理解2含有邏輯聯(lián)結詞的命題真假判斷口訣:含有邏輯聯(lián)結詞的命題真假判斷口訣:pq見真即真,見真即真,pq見假即假,見假即假,p與與p真假相反真假相反3要寫一個命題的否定,需先分清其是全稱命題還是特稱要寫一個命題的否定,需先分
15、清其是全稱命題還是特稱命題,對照否定結構去寫,并注意與否命題區(qū)別;否定的規(guī)命題,對照否定結構去寫,并注意與否命題區(qū)別;否定的規(guī)律是律是“改量詞,否結論改量詞,否結論”思想方法思想方法課堂小結課堂小結1命題的否定與否命題命題的否定與否命題“否命題否命題”是對原命題是對原命題“若若p,則,則q”的條件和結論分別加以的條件和結論分別加以否定而得到的命題,它既否定其條件,又否定其結論;否定而得到的命題,它既否定其條件,又否定其結論;“命命題的否定題的否定”即即“非非p”,只是否定命題,只是否定命題p的結論的結論2命題的否定包括:命題的否定包括:(1)對對“若若p,則,則q”形式命題的否定;形式命題的否定;(2)對含有邏輯聯(lián)結詞命題的否定;對含有邏輯聯(lián)結詞命題的否定;(3)對全稱命題和特稱命題對全稱命題和特稱命題的否定,要特別注意下表中常見詞語的否定的否定,要特別注意下表中常見詞語的否定易錯防范易錯防范課堂小結課堂小結易錯防范易錯防范課堂小結課堂小結詞語詞語詞語的否定詞語的否定等于等于不等于不等于大于大于不大于不大于(或小于等于或小于等于)小于小于不小于不小于(或大于等于或大于等于)是是不是不是一定是一定是不一定是不一定是都是都是不都是不都是(至少有一個不是至少有一個不是)必有一個必有一個一個也沒有一個也沒有任意的任意的某一個某一個且且或或或或且且至多有一個至多有一個至少有兩個至少有兩個