【備考】高考數(shù)學(xué) (真題模擬新題分類匯編) 函數(shù)與導(dǎo)數(shù) 文
《【備考】高考數(shù)學(xué) (真題模擬新題分類匯編) 函數(shù)與導(dǎo)數(shù) 文》由會員分享,可在線閱讀,更多相關(guān)《【備考】高考數(shù)學(xué) (真題模擬新題分類匯編) 函數(shù)與導(dǎo)數(shù) 文(43頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 函數(shù)與導(dǎo)數(shù) B1 函數(shù)及其表示 圖1-1 3.BP[2013安徽卷] 如圖1-1所示,程序框圖(算法流程圖)的輸出結(jié)果為( ) A. B. C. D. 3.C [解析] 依次運算的結(jié)果是s=,n=4;s=+,n=6;s=++,n=8,此時輸出s,故輸出結(jié)果是++=. 14.B1,B14[2013安徽卷] 定義在R上的函數(shù)f(x)滿足f(x+1)=2f(x),若當(dāng)0≤x≤1時,f(x)=x(1-x),則當(dāng)-1≤x≤0時,f(x)=________. 14.- [解析] 當(dāng)-1≤x≤0時,0≤x+1≤1,由f(x+1)=2
2、f(x)可得f(x)=f(x+1)=-x(x+1). 11.B1,E3[2013安徽卷] 函數(shù)y=ln1++的定義域為________. 11.(0,1] [解析] 實數(shù)x滿足1+>0且1-x2≥0.不等式1+>0,即>0,解得x>0或x<-1;不等式1-x2≥0的解為-1≤x≤1.故所求函數(shù)的定義域是(0,1]. 13.B1[2013福建卷] 已知函數(shù)f(x)=則f=________. 13.-2 [解析] f=-tan =-1,f(-1)=-2. 21.B1,B12[2013江西卷] 設(shè)函數(shù) f(x)=a為常數(shù)且a∈(0,1). (1)當(dāng)a=時,求f; (2)若x0滿足f
3、(f(x0))=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點.證明函數(shù)f(x)有且僅有兩個二階周期點,并求二階周期點x1,x2;
(3)對于(2)中的x1,x2,設(shè)A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),記△ABC的面積為S(a),求S(a)在區(qū)間上的最大值和最小值.
21.解:(1)當(dāng)a=時,f=,
f=f=2=.
(2)f(f(x))=
當(dāng)0≤x≤a2時,由x=x解得x=0,
因為f(0)=0,故x=0不是f(x)的二階周期點;
當(dāng)a2 4、周期點;
當(dāng)a 5、)在區(qū)間上的最小值為g=>0,
故對于任意a∈,g(a)=a3-2a2-2a+2>0,
S′(a)=>0)
則S(a)在區(qū)間上單調(diào)遞增,
故S(a)在區(qū)間上的最小值為S=,最大值為S=.
12.B1[2013遼寧卷] 已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.設(shè) H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值),記H1(x)的最小值為A,H2(x)的最大值為B,則A-B=( )
A.a(chǎn)2-2a-16 B.a(chǎn)2+2 6、a-16
C.-16 D.16
12.C [解析] 由題意知當(dāng)f(x)=g(x)時,即x2-2(a+2)x+a2=-x2+2(a-2)x-a2+8,整理得x2-2ax+a2-4=0,所以x=a+2或x=a-2,
H1(x)=max{f(x),g(x)}=
H2(x)=min{f(x),g(x)}=
由圖形可知(圖略),A=H1(x)min=-4a-4,B=H2(x)max=12-4a,則A-B=-16,故選C.
7.B1[2013遼寧卷] 已知函數(shù)f(x)=ln(-3x)+1,則f(lg 2)+flg =( )
A.-1 B.0
C.1 D.2
7.D [解析] 由已 7、知條件可知,f(x)+f(-x)=ln(-3x)+1+ln(+3x)+1=2,而lg 2+lg=lg 2-lg 2=0,故而f(lg 2)+f=2.
圖1-9
19.B1,I2[2013新課標全國卷Ⅱ] 經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1 t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1 t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖1-9所示.經(jīng)銷商為下一個銷售季度購進了130 t該產(chǎn)品.以X(單位:t,100≤X≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(1)將T表示為X的函數(shù);
( 8、2)根據(jù)直方圖估計利潤T不少于57 000元的概率.
19.解:(1)當(dāng)X∈[100,130)時,
T=500X-300(130-X)
=800X-39 000.
當(dāng)X∈[130,150]時,T=500130=65 000.
所以T=
(2)由(1)知利潤T不少于57 000元當(dāng)且僅當(dāng)
120≤X≤150.
由直方圖知需求量X∈[120,150]的頻率為0.7,所以下一個銷售季度內(nèi)的利潤T不少于57 000元的概率的估計值為0.7.
5.B1[2013山東卷] 函數(shù)f(x)=+的定義域為( )
A.(-3,0]
B.(-3,1]
C.(-∞,-3)∪(-3,0]
D 9、.(-∞,-3)∪(-3,1]
5.A [解析] 要使函數(shù)有意義,須有解之得-3 10、(x1,kx1),(x2,kx2),則
|OM|2=(1+k2)x,|ON|2=(1+k2)x.
又|OQ|2=m2+n2=(1+k2)m2,
由=+,得
=+,
即=+=.
由(*)式可知,x1+x2=,x1x2=,
所以m2=.
因為點Q在直線y=kx上,所以k=,代入m2=中并化簡,得5n2-3m2=36.
由m2=及k2>3,可知0 11、________.
11.10 [解析] f(a)==3.則a-1=9,a=10.
3.B1[2013重慶卷] 函數(shù)y=的定義域是( )
A.(-∞,2) B.(2,+∞)
C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞)
3.C [解析] 由題可知所以x>2且x≠3,故選C.
B2 反函數(shù)
6.B2[2013全國卷] 函數(shù)f(x)=log2(x>0)的反函數(shù)f-1(x)=( )
A.(x>0) B.(x≠0)
C.2x-1(x∈R) D.2x-1(x>0)
6.A [解析] 令y=log2,則y> 12、0,且1+=2y,解得x=,交換x,y得f-1(x)=(x>0).
B3 函數(shù)的單調(diào)性與最值
13.B3[2013北京卷] 函數(shù)f(x)=的值域為________.
13.(-∞,2) [解析] 函數(shù)y=logx在(0,+∞)上為減函數(shù),當(dāng)x≥1時,函數(shù)y=logx的值域為(-∞,0];函數(shù)y=2x在R上是增函數(shù),當(dāng)x<1時,函數(shù)y=2x的值域為(0,2),所以原函數(shù)的值域為(-∞,2).
3.B4,B3[2013北京卷] 下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( )
A.y= B.y=e-x
C.y=-x 13、2+1 D.y=lg |x|
3.C [解析] 對于A,y=是奇函數(shù),排除.對于B,y=e-x既不是奇函數(shù),也不是偶函數(shù),排除.對于D,y=lg |x|是偶函數(shù),但在(0,+∞)上有y=lgx,此時單調(diào)遞增,排除.只有C符合題意.
12.B3,B6[2013新課標全國卷Ⅱ] 若存在正數(shù)x使2x(x-a)<1成立,則a的取值范圍是( )
A.(-∞,+∞) B.(-2,+∞)
C.(0,+∞) D.(-1,+∞)
12.D [解析] 由題意存在正數(shù)x使得a>x-成立,即a>.由于x-是(0,+∞)上的增函數(shù),故x->0-=-1,所以a>-1.答案為D.
11.B3,B5,B8 14、,B12[2013新課標全國卷Ⅱ] 已知函數(shù)f(x)=x3+ax2+bx+c,下列結(jié)論中錯誤的是( )
A.x0∈R,f(x0)=0
B.函數(shù)y=f(x)的圖像是中心對稱圖形
C.若x0是f(x)的極小值點,則f(x)在區(qū)間(-∞,x0)單調(diào)遞減
D.若x0是f(x)的極值點,則f′(x0)=0
11.C [解析] x→-∞時,f(x)<0,x→+∞時,f(x)>0,又f(x)連續(xù),x0∈R,f(x0)=0,A正確.通過平移變換,函數(shù)可以化為f(x)=x3+c,從而函數(shù)y=f(x)的圖像是中心對稱圖形,B正確.若x0是f(x)的極小值點,可能還有極大值點x1,若x1 15、(x)在區(qū)間(x1,x0)單調(diào)遞減,C錯誤.D正確.故答案為C.
21.B3,B9,B12[2013四川卷] 已知函數(shù)f(x)=其中a是實數(shù).設(shè)A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖像上的兩點,且x1 16、1),點B處的切線斜率為f′(x2).
故當(dāng)點A處的切線與點B處的切線垂直時,有f′(x1)f′(x2)=-1.
當(dāng)x<0時,對函數(shù)f(x)求導(dǎo),得f′(x)=2x+2.
因為x1 17、,函數(shù)f(x)的圖像在點(x1,f(x1))處的切線方程為
y-(x+2x1+a)=(2x1+2)(x-x1),即
y=(2x1+2)x-x+a.
當(dāng)x2>0時,函數(shù)f(x)的圖像在點(x2,f(x2))處的切線方程為y-ln x2=(x-x2),即y=x+ln x2-1.
兩切線重合的充要條件是
由①及x1<0 18、-ln 2-1,
所以a>-ln2-1,
而當(dāng)t∈(0,2)且t趨近于0時,h(t)無限增大,
所以a的取值范圍是(-ln 2-1,+∞).
故當(dāng)函數(shù)f(x)的圖像在點A,B處的切線重合時,a的取值范圍是(-ln 2-1,+∞).
10.B3,B12[2013四川卷] 設(shè)函數(shù)f(x)=(a∈R,e為自然對數(shù)的底數(shù)).若存在b∈[0,1]使f(f(b))=b成立,則a的取值范圍是( )
A.[1,e] B.[1,1+e]
C.[e,1+e] D.[0,1]
10.A [解析] 易得f(x)在[0,1]上是增函數(shù),對于b∈[0,1],如果f(b)=c>b,則f(f(b))=f 19、(c)>f(b)=c>b,不可能有f(f(b))=b;同理,當(dāng)f(b)=d<b時,則f(f(b))=f(d)<f(b)=d<b,也不可能有f(f(b))=b;因此必有f(b)=b,即方程f(x)=x在[0,1]上有解,即=x.因為x≥0,兩邊平方得ex+x-a=x2,所以a=ex-x2+x.記g(x)=ex-x2+x,則g′(x)=ex-2x+1.
當(dāng)x∈時,ex>0,-2x+1≥0,故g′(x)>0.
當(dāng)x∈時,ex>>1,-2x+1≥-1,故g′(x)>0,綜上,g′(x)在x∈[0,1]上恒大于0,所以g(x)在[0,1]上為增函數(shù),值域為[g(0),g(1)],即[1,e],從而a 20、的取值范圍是[1,e].
B4 函數(shù)的奇偶性與周期性
3.B4,B3[2013北京卷] 下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( )
A.y= B.y=e-x
C.y=-x2+1 D.y=lg |x|
3.C [解析] 對于A,y=是奇函數(shù),排除.對于B,y=e-x既不是奇函數(shù),也不是偶函數(shù),排除.對于D,y=lg |x|是偶函數(shù),但在(0,+∞)上有y=lgx,此時單調(diào)遞增,排除.只有C符合題意.
13.B4[2013全國卷] 設(shè)f(x)是以2為周期的函數(shù),且當(dāng)x∈[1,3)時,f(x)=x- 21、2,則f(-1)=________
13.-1 [解析] f(-1)=f(-1+2)=f(1)=1-2=-1.
2.B4[2013廣東卷] 函數(shù)y=的定義域是( )
A.(-1,+∞) B.[-1,+∞)
C.(-1,1)∪(1,+∞) D.[-1,1)∪(1,+∞)
2.C [解析] 由題知得x∈(-1,1)∪(1,+∞),故選C.
8.B4[2013湖北卷] x為實數(shù),[x]表示不超過x的最大整數(shù),則函數(shù)f(x)=x-[x]在R上為( )
A.奇函數(shù) B.偶函數(shù) C.增函數(shù) D.周期函數(shù)
8.D [解析] 作出函數(shù)f(x)=x-[x]的大致圖像如下:
觀 22、察圖像,易知函數(shù)f(x)=x-[x]是周期函數(shù).
4.B4[2013湖南卷] 已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(-1)+g(1)=2,f(1)+g(-1)=4,則g(1)等于( )
A.4 B.3
C.2 D.1
4.B [解析] 由函數(shù)的奇偶性質(zhì)可得f(-1)=-f(1),g(-1)=g(1).根據(jù)f(-1)+g(1)=-f(1)+g(1)=2,f(1)+g(-1)=f(1)+g(1)=4,可得2g(1)=6,即g(1)=3,選B.
11.B4[2013江蘇卷] 已知f(x)是定義在R上的奇函數(shù).當(dāng)x>0時,f(x)=x2-4x,則不等式f(x)>x的解集用區(qū)間表 23、示為________.
11.(-5,0)∪(5,+∞) [解析] 設(shè)x<0,則-x>0.因為f(x)是奇函數(shù),所以f(x)=-f(-x)=-(x2+4x).
又f(0)=0,于是不等式f(x)>x等價于
或
解得x>5或-5 24、數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增.若實數(shù)a滿足f(log2a)+f(loga)≤2f(1),則a的取值范圍是( )
A.[1,2] B.0,
C.,2 D.(0,2]
7.C [解析] ∵f(x)為偶函數(shù),∴f(log2a)=f(loga),又∵f(log2a)+f≤2f(1),∴f(log2a)≤f(1),即|log2a|≤1,解之得≤a≤2.
9.B4和B7[2013重慶卷] 已知函數(shù)f(x)=ax3+bsin x+4(a,b∈R),f(lg(log210))=5,則f(lg(lg 2))=( )
A.-5 B.-1 C.3 D.4
9.C [解析] 因為f(l 25、g(log210))=f=f(-lg(lg 2))=5,又因為f(x)+f(-x)=8,所以f(-lg(lg2))+f(lg(lg2))=5+f(lg(lg2))=8,所以f(lg(lg 2))=3,故選C.
B5 二次函數(shù)
6.B5,B9[2013湖南卷] 函數(shù)f(x)=ln x的圖像與函數(shù)g(x)=x2-4x+4的圖像的交點個數(shù)為( )
A.0 B.1
C.2 D.3
6.A [解析] 方法一:作出函數(shù)f(x)=ln x,g(x)=x2-4x+4的圖像如圖所示
可知,其交點個數(shù)為2,選C.
方法二(數(shù)值法)
26、
x
1
2
4
f(x)=ln x
0
ln 2(>0)
ln 4(<4)
g(x)=x2-4x+4
1
0
4
可知它們有2個交點,選C.
2.B5[2013江西卷] 若集合A={x∈R|ax2+ax+1=0}中只有一個元素,則a=( )
A.4 B.2 C.0 D.0或4
2.A [解析] 當(dāng)a=0時,A=;當(dāng)a≠0時,Δ=a2-4a=0,則a=4,故選A.
11.B3,B5,B8,B12[2013新課標全國卷Ⅱ] 已知函數(shù)f(x)=x3+ax2+bx+c,下列結(jié)論中錯誤的是( )
A.x0∈R,f(x0)=0
B.函數(shù)y=f(x)的圖像 27、是中心對稱圖形
C.若x0是f(x)的極小值點,則f(x)在區(qū)間(-∞,x0)單調(diào)遞減
D.若x0是f(x)的極值點,則f′(x0)=0
11.C [解析] x→-∞時,f(x)<0,x→+∞時,f(x)>0,又f(x)連續(xù),x0∈R,f(x0)=0,A正確.通過平移變換,函數(shù)可以化為f(x)=x3+c,從而函數(shù)y=f(x)的圖像是中心對稱圖形,B正確.若x0是f(x)的極小值點,可能還有極大值點x1,若x1 28、取值范圍是( )
A.(-∞,0] B.(-∞,1]
C.[-2,1] D.[-2,0]
12.D [解析] 函數(shù)y=|f(x)|=在同一坐標系中畫出y=|f(x)|,y=ax的圖像如圖所示,問題等價于直線y=ax不在函數(shù)y=|f(x)|圖像的上方,顯然a>0時,y=ln (x+1)的圖像不可能恒在直線y=ax的上方,故a≤0;由于直線y=ax與曲線y=x2-2x均過坐標原點,所以滿足條件的直線y=ax的極端位置是曲線y=x2-2x在點(0,0)處的切線,y′=2x-2,當(dāng)x=0時y′=-2.所以-2≤a≤0.
7.B5[2013浙江卷] 已知a,b,c∈R,函數(shù)f(x)=a 29、x2+bx+c.若f(0)=f(4)>f(1),則( )
A.a(chǎn)>0,4a+b=0 B.a(chǎn)<0,4a+b=0
C.a(chǎn)>0,2a+b=0 D.a(chǎn)<0,2a+b=0
7.A [解析] 若f(0)=f(4),則函數(shù)f(x)的圖像關(guān)于直線x=2對稱,則-=2,則4a+b=0,而f(0)=f(4)>f(1),故開口向上,所以a>0,4a+b=0.所以選擇A.
B6 指數(shù)與指數(shù)函數(shù)
12.B3,B6[2013新課標全國卷Ⅱ] 若存在正數(shù)x使2x(x-a)<1成立,則a的取值范圍是( )
A.(-∞,+∞) B.(-2,+∞)
C 30、.(0,+∞) D.(-1,+∞)
12.D [解析] 由題意存在正數(shù)x使得a>x-成立,即a>.由于x-是(0,+∞)上的增函數(shù),故x->0-=-1,所以a>-1.答案為D.
B7 對數(shù)與指數(shù)函數(shù)
8.B7,E1[2013新課標全國卷Ⅱ] 設(shè)a=log32,b=log52,c=log23,則( )
A.a(chǎn)>c>b B.b>c>a
C.c>b>a D.c>a>b
8.D [解析] a-b=log32-log52=-=>0a>b,c=log23>1,a<1,b<1,所以c>a>b,答案為D.
16.B7,M1[20 31、13山東卷] 定義“正對數(shù)”:ln+x=現(xiàn)有四個命題:
①若a>0,b>0,則ln+(ab)=bln+a;
②若a>0,b>0,則ln+(ab)=ln a+ln+b;
③若a>0,b>0,則ln+≥ln+a-ln+b;
④若a>0,b>0,則ln+(a+b)≤ln+a+ln+b+ln 2.
其中的真命題有________.(寫出所有真命題的編號)
16.①③④ [解析] ①中,當(dāng)ab≥1時,∵b>0,∴a≥1,ln+ab=ln ab=bln a=bln+a;當(dāng)0 32、=ln+(ab)=0,右邊=ln+a+ln+b=ln a+0=ln a>0,∴②不成立.
③中,當(dāng)≤1,即a≤b時,左邊=0,右邊=ln+a-ln+b≤0,左邊≥右邊,成立;當(dāng)>1時,左邊=ln =ln a-ln b>0,若a>b>1時,右邊=ln a-ln b,左邊≥右邊成立;若01>b>0,左邊=ln =ln a-ln b>ln a,右邊=ln a,左邊≥右邊成立,∴③正確.
④中,若00,左邊≤右邊;若a+b≥1,ln+(a+b)-ln 2=ln 33、(a+b)-ln 2=ln.
又∵≤a或≤b,a,b至少有1個大于1,
∴l(xiāng)n≤ln a或ln≤ln b,即有l(wèi)n+(a+b)-ln 2=ln (a+b)-ln 2=ln≤ln+a+ln+b,∴④正確.
7.B4,B7[2013天津卷] 已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增.若實數(shù)a滿足f(log2a)+f(loga)≤2f(1),則a的取值范圍是( )
A.[1,2] B.0,
C.,2 D.(0,2]
7.C [解析] ∵f(x)為偶函數(shù),∴f(log2a)=f(loga),又∵f(log2a)+f≤2f(1),∴f(log2a)≤f(1 34、),即|log2a|≤1,解之得≤a≤2.
3.B7[2013陜西卷] 設(shè)a,b,c均為不等于1的正實數(shù),則下列等式中恒成立的是( )
A.logablogcb=logca B.logablogca=logcb
C.loga(bc)=logablogac D.loga(b+c)=logab+logac
3.B [解析] 利用對數(shù)的運算性質(zhì)可知C,D是錯誤的.再利用對數(shù)運算性質(zhì)logablogcb≠logca.又因為logablogca===logcb,故選B.
11.B7[2013四川卷] lg +lg 的值是________.
11.1 [解析] lg +lg =lg ( 35、)=lg =lg 10=1.
9.B4和B7[2013重慶卷] 已知函數(shù)f(x)=ax3+bsin x+4(a,b∈R),f(lg(log210))=5,則f(lg(lg 2))=( )
A.-5 B.-1 C.3 D.4
9.C [解析] 因為f(lg(log210))=f=f(-lg(lg 2))=5,又因為f(x)+f(-x)=8,所以f(-lg(lg2))+f(lg(lg2))=5+f(lg(lg2))=8,所以f(lg(lg 2))=3,故選C.
B8 冪函數(shù)與函數(shù)的圖像
5.B8[2013福建卷] 函數(shù)f(x) 36、=ln(x2+1)的圖像大致是( )
圖1-1
5.A [解析] f(x)是定義域為R的偶函數(shù),圖像關(guān)于y軸對稱,又過點(0,0),故選A.
11.B3,B5,B8,B12[2013新課標全國卷Ⅱ] 已知函數(shù)f(x)=x3+ax2+bx+c,下列結(jié)論中錯誤的是( )
A.x0∈R,f(x0)=0
B.函數(shù)y=f(x)的圖像是中心對稱圖形
C.若x0是f(x)的極小值點,則f(x)在區(qū)間(-∞,x0)單調(diào)遞減
D.若x0是f(x)的極值點,則f′(x0)=0
11.C [解析] x→-∞時,f(x)<0,x→+∞時,f(x)>0,又f(x)連續(xù),x0∈R,f(x0)= 37、0,A正確.通過平移變換,函數(shù)可以化為f(x)=x3+c,從而函數(shù)y=f(x)的圖像是中心對稱圖形,B正確.若x0是f(x)的極小值點,可能還有極大值點x1,若x1 38、x)=3x2+2ax+b,根據(jù)已知,得3x2+2ax+b=0有兩個不同的實根x1,x2,且x1 39、{2,3} B.{2,3,4} C.{3,4} D.{3,4,5}
8.B [解析] 問題等價于求直線y=kx與函數(shù)y=f(x)圖像的交點個數(shù),從圖中可以看出交點個數(shù)可以為2,3,4,故n的取值范圍是{2,3,4}.
18.B11,B12,B9,B14[2013北京卷] 已知函數(shù)f(x)=x2+xsin x+cos x.
(1)若曲線y=f(x)在點(a,f(a))處與直線y=b相切,求a與b的值;
(2)若曲線y=f(x)與直線y=b有兩個不同交點,求b的取值范圍.
18.解:由f(x)=x2+xsin x+cos x,得
f′(x)=x(2+cos x).
(1)因為曲 40、線y=f(x)在點(a,f(a))處與直線y=b相切,所以f′(a)=a(2+cos a)=0,b=f(a).
解得a=0,b=f(0)=1.
(2)令f ′(x)=0,得x=0.
f(x)與f′(x)的情況如下:
x
(-∞,0)
0
(0,+∞)
f′(x)
-
0
+
f(x)
1
所以函數(shù)f(x)在區(qū)間(-∞,0)上單調(diào)遞減,在區(qū)間(0,+∞)上單調(diào)遞增,f(0)=1是f(x)的最小值.
當(dāng)b≤1時,曲線y=f(x)與直線y=b最多只有一個交點;
當(dāng)b>1時,f(-2b)=f(2b)≥4b2-2b-1>4b-2b-1>b,f(0)=1
41、,
所以存在x1∈(-2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.
由于函數(shù)f(x)在區(qū)間(-∞,0)和(0,+∞)上均單調(diào),所以當(dāng)b>1時,曲線y=f(x)與直線y=b有且僅有兩個不同交點.
綜上可知,如果曲線y=f(x)與直線y=b有兩個不同交點,那么b的取值范圍是(1,+∞).
6.B5,B9[2013湖南卷] 函數(shù)f(x)=ln x的圖像與函數(shù)g(x)=x2-4x+4的圖像的交點個數(shù)為( )
A.0 B.1
C.2 D.3
6.A [解析] 方法一:作出函數(shù)f(x)=ln x,g(x)=x2-4x+4的圖像如圖所示
可知,其交點個數(shù)為2,選 42、C.
方法二(數(shù)值法)
x
1
2
4
f(x)=ln x
0
ln 2(>0)
ln 4(<4)
g(x)=x2-4x+4
1
0
4
可知它們有2個交點,選C.
8.B9[2013天津卷] 設(shè)函數(shù)f(x)=ex+x-2,g(x)=ln x+x2-3.若實數(shù)a,b滿足f(a)=0,g(b)=0,則( )
A.g(a)<0 43、
所以g(a)<0 44、).
故當(dāng)點A處的切線與點B處的切線垂直時,有f′(x1)f′(x2)=-1.
當(dāng)x<0時,對函數(shù)f(x)求導(dǎo),得f′(x)=2x+2.
因為x1 45、(x1))處的切線方程為
y-(x+2x1+a)=(2x1+2)(x-x1),即
y=(2x1+2)x-x+a.
當(dāng)x2>0時,函數(shù)f(x)的圖像在點(x2,f(x2))處的切線方程為y-ln x2=(x-x2),即y=x+ln x2-1.
兩切線重合的充要條件是
由①及x1<0 46、2-1,
而當(dāng)t∈(0,2)且t趨近于0時,h(t)無限增大,
所以a的取值范圍是(-ln 2-1,+∞).
故當(dāng)函數(shù)f(x)的圖像在點A,B處的切線重合時,a的取值范圍是(-ln 2-1,+∞).
B10 函數(shù)模型及其應(yīng)用
5.B10[2013湖北卷] 小明騎車上學(xué),開始時勻速行駛,途中因交通堵塞停留了一段時間,后為了趕時間加快速度行駛,與以上事件吻合得最好的圖像是( )
圖1-1
5.C [解析] 由題意可知函數(shù)圖像最開始為“斜率為負的線段”,接著為“與x軸平行的線段”,最后為“斜率為負值,且小于之前斜率的線段” 47、.觀察選項中圖像可知,C項符合,故選C.
10.B10[2013陜西卷] 設(shè)[x]表示不大于x的最大整數(shù),則對任意實數(shù)x,有( )
A.[-x]=-[x] B.=[x]
C.[2x]=2[x] D.[x]+=[2x]
10.D [解析] 可取特值x=3.5,則[-x]=[-3.5]=-4,-[x]=-[3.5]=-3,故A錯.x+=[3.5+0.5]=4,而[x]=[3.5]=3,故B錯. [2x]=[7]=7,2[x]=2[3.5]=6,故C錯.[x]+ x+=7,而[2x]=[7]=7,故只有D正確.
B11 導(dǎo)數(shù)及其運算
48、
18.B11,B12,B9,B14[2013北京卷] 已知函數(shù)f(x)=x2+xsin x+cos x.
(1)若曲線y=f(x)在點(a,f(a))處與直線y=b相切,求a與b的值;
(2)若曲線y=f(x)與直線y=b有兩個不同交點,求b的取值范圍.
18.解:由f(x)=x2+xsin x+cos x,得
f′(x)=x(2+cos x).
(1)因為曲線y=f(x)在點(a,f(a))處與直線y=b相切,所以f′(a)=a(2+cos a)=0,b=f(a).
解得a=0,b=f(0)=1.
(2)令f ′(x)=0,得x=0.
f(x)與f′(x)的情況如下:
49、
x
(-∞,0)
0
(0,+∞)
f′(x)
-
0
+
f(x)
1
所以函數(shù)f(x)在區(qū)間(-∞,0)上單調(diào)遞減,在區(qū)間(0,+∞)上單調(diào)遞增,f(0)=1是f(x)的最小值.
當(dāng)b≤1時,曲線y=f(x)與直線y=b最多只有一個交點;
當(dāng)b>1時,f(-2b)=f(2b)≥4b2-2b-1>4b-2b-1>b,f(0)=11時,曲線y=f(x)與直線y=b有且僅有兩個不同交點.
綜 50、上可知,如果曲線y=f(x)與直線y=b有兩個不同交點,那么b的取值范圍是(1,+∞).
10.B11[2013全國卷] 已知曲線y=x4+ax2+1在點(-1,a+2)處切線的斜率為8,則a=( )
A.9 B.6
C.-9 D.-6
10.D [解析] y′=4x3+2ax,當(dāng)x=-1時y′=8,故8=-4-2a,解得a=-6.
12.B11[2013廣東卷] 若曲線y=ax2-ln x在點(1,a)處的切線平行于x軸,則a=________
12. [解析] 易知點(1,a)在曲線y=ax2-ln x上,y′=2ax-,∴=2a-1=0,∴a=.
11.B11[2 51、013江西卷] 若曲線y=xα+1(α∈R)在點(1,2)處的切線經(jīng)過坐標原點,則α=________.
11.2 [解析] y′=αxα-1,y′=α,所以切線方程為y-2=α(x-1),該切線過原點,得α=2.
21.B11,B12[2013陜西卷] 已知函數(shù)f(x)=ex,x∈R.
(1)求f(x)的反函數(shù)的圖像上點(1,0)處的切線方程;
(2)證明:曲線y=f(x)與曲線y=x2+x+1有唯一公共點;
(3)設(shè)a
52、.
于是在點(1,0)處切線方程為y=x-1.
(2)方法一:曲線y=ex與y=x2+x+1公共點的個數(shù)等于函數(shù)φ(x)=ex-x2-x-1零點的個數(shù).
∵φ(0)=1-1=0,∴φ(x)存在零點x=0.
又φ′(x)=ex-x-1,令h(x)=φ′(x)=ex-x-1,
則h′(x)=ex-1.
當(dāng)x<0時,h′(x)<0,∴φ′(x)在(-∞,0)上單調(diào)遞減;
當(dāng)x>0時,h′(x)>0,∴φ′(x)在(0,+∞)上單調(diào)遞增.
∴φ′(x)在x=0有唯一的極小值φ′(0)=0,
即φ′(x)在R上的最小值為φ′(0)=0,
∴φ′(x)≥0(僅當(dāng)x=0時等號成立),
53、∴φ(x)在R上是單調(diào)遞增的,
∴φ(x)在R上有唯一的零點.
故曲線y=f(x)與曲線y=x2+x+1有唯一公共點.
方法二:∵ex>0,x2+x+1>0,
∴曲線y=ex與y=x2+x+1公共點的個數(shù)等于
曲線y=與直線y=1公共點的個數(shù).
設(shè)φ(x)=,則φ(0)=1,即x=0時,兩曲線有公共點.
又φ′(x)==≤0(僅當(dāng)x=0時等號成立),
∴φ(x)在R上單調(diào)遞減,
∴φ(x)與y=1有唯一的公共點,
故曲線y=f(x)與y=x2+x+1有唯一的公共點.
(3)-f=-e ==.
設(shè)函數(shù)u(x)=ex --2x(x≥0),則u′(x)=ex+-2≥2-2=0 54、.
∴u′(x)≥0(僅當(dāng)x=0時等號成立),
∴u(x)單調(diào)遞增.
當(dāng)x>0時,u(x)>u(0)=0.
令x=,則得e-e-(b-a)>0.
∴>f.
20.B11、B12[2013新課標全國卷Ⅰ] 已知函數(shù)f(x)=ex(ax+b)-x2-4x,曲線y=f(x)在點(0,f(0))處的切線方程為y=4x+4.
(1)求a,b的值;
(2)討論f(x)的單調(diào)性,并求f(x)的極大值.
20.解:(1)f′(x)=ex(ax+a+b)-2x-4.
由已知得f(0)=4,f′(0)=4,故b=4,a+b=8.
從而a=4,b=4.
(2)由(1)知,f(x)=4ex( 55、x+1)-x2-4x.
f′(x)=4ex(x+2)-2x-4=4(x+2).
令f′(x)=0,得x=-ln 2或x=-2.
從而當(dāng)x∈(-∞,-2)∪(-ln 2,+∞)時,f′(x)>0;當(dāng)x∈(-2,-ln 2)時,f′(x)<0.
故f(x)在(-∞,-2),(-ln 2,+∞)上單調(diào)遞增,在(-2,-ln 2)上單調(diào)遞減.
當(dāng)x=-2時,函數(shù)f(x)取得極大值,極大值為f(-2)=4(1-e-2).
20.B11和B12[2013重慶卷] 某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè) 56、面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時該蓄水池的體積最大.
20.解:(1)因為蓄水池側(cè)面的總成本為1002πrh=200πrh元,底面的總成本為160πr2元,所以蓄水池的總成本為(200πrh+160πr2)元,又據(jù)題意200πrh+160πr2=12 000π,所以h=(300-4r2),從而
V(r)=πr2h=(300r-4r3).
因為r>0,又由h>0可得r<5 ,故函數(shù)V(r)的 57、定義域為(0,5 ).
(2)因為V(r)=(300r-4r3),故V′(r)=(300-12r2).令V′(r)=0,解得r1=5,r2=-5(r2=-5不在定義域內(nèi),舍去).
當(dāng)r∈(0,5)時,V′(r)>0,故V(r)在(0,5)上為增函數(shù);當(dāng)r∈(5,5 )時,V′(r)<0,故V(r)在(5,5 )上為減函數(shù).
由此可知,V(r)在r=5處取得最大值,此時h=8,即當(dāng)r=5,h=8時,該蓄水池的體積最大.
B12 導(dǎo)數(shù)的應(yīng)用
20.E3,B12[2013安徽卷] 設(shè)函數(shù)f(x)=ax-(1+a2)x2,其中a>0,區(qū)間
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版六年級下冊科學(xué)第一課時_-_我們身邊的物質(zhì)(教育精品)
- 以夢為馬勵志正能量年終工作總結(jié)動態(tài)模板課件
- 【培訓(xùn)課件】成功大學(xué)畢業(yè)生的綜合素質(zhì)結(jié)構(gòu)
- 【培訓(xùn)課件】義務(wù)消防員培訓(xùn)內(nèi)容
- 科學(xué)飲食健康生活專家講座
- 外觀設(shè)計專利權(quán)保護問題
- 熬夜的危害醫(yī)學(xué)
- 病態(tài)心理學(xué)醫(yī)學(xué)知識專題講座
- 意識障礙分類
- 小清新卡通世界環(huán)境日教育PPT模板課件
- 《大樹的故事》教學(xué)課件
- 護理安全和管理措施
- 團學(xué)工作中存在的問題及解決方案
- 小兒發(fā)熱的常見病因和處置措施專家講座
- 伴性遺傳上課用專家講座