高二數(shù)學:第一章 導數(shù)及其應(yīng)用 綜合檢測 (人教A版選修2-2)【含解析】

上傳人:每**** 文檔編號:35574333 上傳時間:2021-10-27 格式:DOC 頁數(shù):14 大?。?23KB
收藏 版權(quán)申訴 舉報 下載
高二數(shù)學:第一章 導數(shù)及其應(yīng)用 綜合檢測 (人教A版選修2-2)【含解析】_第1頁
第1頁 / 共14頁
高二數(shù)學:第一章 導數(shù)及其應(yīng)用 綜合檢測 (人教A版選修2-2)【含解析】_第2頁
第2頁 / 共14頁
高二數(shù)學:第一章 導數(shù)及其應(yīng)用 綜合檢測 (人教A版選修2-2)【含解析】_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

8 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高二數(shù)學:第一章 導數(shù)及其應(yīng)用 綜合檢測 (人教A版選修2-2)【含解析】》由會員分享,可在線閱讀,更多相關(guān)《高二數(shù)學:第一章 導數(shù)及其應(yīng)用 綜合檢測 (人教A版選修2-2)【含解析】(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第一章 導數(shù)及其應(yīng)用綜合檢測 時間120分鐘,滿分150分。 一、選擇題(本大題共12個小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的) 1.(2010全國Ⅱ文,7)若曲線y=x2+ax+b在點(0,b)處的切線方程是x-y+1=0,則(  ) A.a(chǎn)=1,b=1       B.a(chǎn)=-1,b=1 C.a(chǎn)=1,b=-1 D.a(chǎn)=-1,b=-1 [答案] A [解析] y′=2x+a,∴y′|x=0=(2x+a)|x=0=a=1, 將(0,b)代入切線方程得b=1. 2.一物體的運動方程為s=2tsint+t,則它的速度方程為( 

2、 ) A.v=2sint+2tcost+1 B.v=2sint+2tcost C.v=2sint D.v=2sint+2cost+1 [答案] A [解析] 因為變速運動在t0的瞬時速度就是路程函數(shù)y=s(t)在t0的導數(shù),S′=2sint+2tcost+1,故選A. 3.曲線y=x2+3x在點A(2,10)處的切線的斜率是(  ) A.4 B.5 C.6 D.7 [答案] D [解析] 由導數(shù)的幾何意義知,曲線y=x2+3x在點A(2,10)處的切線的斜率就是函數(shù)y=x2+3x在x=2時的導數(shù),y′|x=2=7,故選D. 4.函數(shù)y=x|x(x-3

3、)|+1(  ) A.極大值為f(2)=5,極小值為f(0)=1 1 / 14 B.極大值為f(2)=5,極小值為f(3)=1 C.極大值為f(2)=5,極小值為f(0)=f(3)=1 D.極大值為f(2)=5,極小值為f(3)=1,f(-1)=-3 [答案] B [解析] y=x|x(x-3)|+1 = ∴y′= x變化時,f′(x),f(x)變化情況如下表: x (-∞,0) 0 (0,2) 2 (2,3) 3 (3,+∞) f′(x) + 0 + 0 - 0 + f(x)  無極值  極大值5  極小值1 

4、 ∴f(x)極大=f(2)=5,f(x)極?。絝(3)=1 故應(yīng)選B. 5.(2009安徽理,9)已知函數(shù)f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(1,f(1))處的切線方程是(  ) A.y=2x-1 B.y=x C.y=3x-2 D.y=-2x+3 [答案] A [解析] 本題考查函數(shù)解析式的求法、導數(shù)的幾何意義及直線方程的點斜式. ∵f(x)=2f(2-x)-x2+8x-8, ∴f(2-x)=2f(x)-x2-4x+4, ∴f(x)=x2,∴f′(x)=2x, ∴曲線y=f(x)在點(1,f(1))處的切線斜率為2

5、,切線方程為y-1=2(x-1),∴y=2x-1. 6.函數(shù)f(x)=x3+ax2+3x-9,已知f(x)在x=-3時取得極值,則a等于(  ) A.2 B.3 C.4 D.5 [答案] D [解析] f′(x)=3x2+2ax+3, ∵f(x)在x=-3時取得極值, ∴x=-3是方程3x2+2ax+3=0的根, ∴a=5,故選D. 7.設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù).當x<0時,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,則不等式f(x)g(x)<0的解集是(  ) A.(-3,0)∪(3,+∞) B.(-3,

6、0)∪(0,3) C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3) [答案] D [解析] 令F(x)=f(x)g(x),易知F(x)為奇函數(shù),又當x<0時,f′(x)g(x)+f(x)g′(x)>0,即F′(x)>0,知F(x)在(-∞,0)內(nèi)單調(diào)遞增,又F(x)為奇函數(shù),所以F(x)在(0,+∞)內(nèi)也單調(diào)遞增,且由奇函數(shù)知f(0)=0,∴F(0)=0. 又由g(-3)=0,知g(3)=0 ∴F(-3)=0,進而F(3)=0 于是F(x)=f(x)g(x)的大致圖象如圖所示 ∴F(x)=f(x)g(x)<0的解集為(-∞,-3)∪(0,3),故應(yīng)選D.

7、8.下面四圖都是同一坐標系中某三次函數(shù)及其導函數(shù)的圖象,其中一定不正確的序號是(  ) A.①② B.③④ C.①③ D.①④ [答案] B [解析]?、鄄徽_;導函數(shù)過原點,但三次函數(shù)在x=0不存在極值;④不正確;三次函數(shù)先增后減再增,而導函數(shù)先負后正再負.故應(yīng)選B. 9.(2010湖南理,5)dx等于(  ) A.-2ln2 B.2ln2 C.-ln2 D.ln2 [答案] D [解析] 因為(lnx)′=, 所以 dx=lnx|=ln4-ln2=ln2. 10.已知三次函數(shù)f(x)=x3-(4m-1)x2+(15m2-2m-7)x

8、+2在x∈(-∞,+∞)是增函數(shù),則m的取值范圍是(  ) A.m<2或m>4 B.-4

9、.有最小值 D.有最小值- [答案] B [解析] 由題意f′(x)=3x2+2bx+c在[-1,2]上,f′(x)≤0恒成立. 所以 即 令b+c=z,b=-c+z,如圖 過A得z最大, 最大值為b+c=-6-=-.故應(yīng)選B. 12.設(shè)f(x)、g(x)是定義域為R的恒大于0的可導函數(shù),且f′(x)g(x)-f(x)g′(x)<0,則當af(b)g(b) B.f(x)g(a)>f(a)g(x) C.f(x)g(b)>f(b)g(x) D.f(x)g(x)>f(a)g(x) [答案] C [解析] 令F(x)=

10、 則F′(x)=<0 f(x)、g(x)是定義域為R恒大于零的實數(shù) ∴F(x)在R上為遞減函數(shù), 當x∈(a,b)時,> ∴f(x)g(b)>f(b)g(x).故應(yīng)選C. 二、填空題(本大題共4個小題,每小題4分,共16分.將正確答案填在題中橫線上) 13.=________. [答案]  [解析] 取F(x)=-, 從而F′(x)= 則=F(-1)-F(-2) =-+=-=. 14.若函數(shù)f(x)=的單調(diào)增區(qū)間為(0,+∞),則實數(shù)a的取值范圍是________. [答案] a≥0 [解析] f′(x)=′=a+, 由題意得,a+≥0,對x∈(0,+∞)恒

11、成立, ∴a≥-,x∈(0,+∞)恒成立,∴a≥0. 15.(2009陜西理,16)設(shè)曲線y=xn+1(n∈N*)在點(1,1)處的切線與x軸的交點的橫坐標為xn,令an=lgxn,則a1+a2+…+a99的值為________. [答案]?。? [解析] 本小題主要考查導數(shù)的幾何意義和對數(shù)函數(shù)的有關(guān)性質(zhì). k=y(tǒng)′|x=1=n+1, ∴切線l:y-1=(n+1)(x-1), 令y=0,x=,∴an=lg, ∴原式=lg+lg+…+lg =lg…=lg=-2. 16.如圖陰影部分是由曲線y=,y2=x與直線x=2,y=0圍成,則其面積為________. [答

12、案]?。玪n2 [解析] 由,得交點A(1,1) 由得交點B. 故所求面積S=dx+dx =x+lnx=+ln2. 三、解答題(本大題共6個小題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟) 17.(本題滿分12分)(2010江西理,19)設(shè)函數(shù)f(x)=lnx+ln(2-x)+ax(a>0). (1)當a=1時,求f(x)的單調(diào)區(qū)間; (2)若f(x)在(0,1]上 的最大值為,求a的值. [解析] 函數(shù)f(x)的定義域為(0,2), f ′(x)=-+a, (1)當a=1時,f ′(x)=,所以f(x)的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

13、 (2)當x∈(0,1]時,f ′(x)=+a>0, 即f(x)在(0,1]上單調(diào)遞增,故f(x)在(0,1]上的最大值為f(1)=a,因此a=. 18.(本題滿分12分)求曲線y=2x-x2,y=2x2-4x所圍成圖形的面積. [解析] 由得x1=0,x2=2. 由圖可知,所求圖形的面積為S=(2x-x2)dx+|(2x2-4x)dx|=(2x-x2)dx-(2x2-4x)dx. 因為′=2x-x2, ′=2x2-4x, 所以S=-=4. 19.(本題滿分12分)設(shè)函數(shù)f(x)=x3-3ax+b(a≠0). (1)若曲線y=f(x)在點(2,f(2))處與直線y=8相切

14、,求a,b的值; (2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點. [分析] 考查利用導數(shù)研究函數(shù)的單調(diào)性,極值點的性質(zhì),以及分類討論思想. [解析] (1)f′(x)=3x2-3a. 因為曲線y=f(x)在點(2,f(2))處與直線y=8相切, 所以即 解得a=4,b=24. (2)f′(x)=3(x2-a)(a≠0). 當a<0時,f′(x)>0,函數(shù)f(x)在(-∞,+∞)上單調(diào)遞增,此時函數(shù)f(x)沒有極值點. 當a>0時,由f′(x)=0得x=. 當x∈(-∞,-)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增; 當x∈(-,)時,f′(x)<0,函數(shù)f(x)單調(diào)遞減; 當

15、x∈(,+∞)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增. 此時x=-是f(x)的極大值點,x=是f(x)的極小值點. 20.(本題滿分12分)已知函數(shù)f(x)=x2+lnx. (1)求函數(shù)f(x)的單調(diào)區(qū)間; (2)求證:當x>1時,x2+lnx0}, ∵f′(x)=x+,故f′(x)>0, ∴f(x)的單調(diào)增區(qū)間為(0,+∞). (2)設(shè)g(x)=x3-x2-lnx, ∴g′(x)=2x2-x-, ∵當x>1時,g′(x)=>0, ∴g(x)在(1,+∞)上為增函數(shù), ∴g(x)>g(1)=>0, ∴

16、當x>1時,x2+lnx0;當12時

17、f′(x)>0. 所以當x=1時,f(x)取極大值f(1)=-a, 當x=2時,f(x)取極小值f(2)=2-a. 故當f(2)>0或f(1)<0時,方程f(x)=0僅有一個實根,解得a<2或a>. 22.(本題滿分14分)已知函數(shù)f(x)=-x3+ax2+1(a∈R). (1)若函數(shù)y=f(x)在區(qū)間上遞增,在區(qū)間上遞減,求a的值; (2)當x∈[0,1]時,設(shè)函數(shù)y=f(x)圖象上任意一點處的切線的傾斜角為θ,若給定常數(shù) a∈,求θ的取值范圍; (3)在(1)的條件下,是否存在實數(shù)m,使得函數(shù)g(x)=x4-5x3+(2-m)x2+1(m∈R)的圖象與函數(shù)y=f(x

18、)的圖象恰有三個交點.若存在,請求出實數(shù)m的值;若不存在,試說明理由. [解析] (1)依題意f′=0, 由f′(x)=-3x2+2ax,得-32+2a=0,即a=1. (2)當x∈[0,1]時,tanθ=f′(x)=-3x2+2ax=-32+. 由a∈,得∈. ①當∈,即a∈時,f′(x)max=, f(x)min=f′(0)=0. 此時0≤tanθ≤. ②當∈(1,+∞),即a∈(3,+∞)時,f′(x)max=f′(1)=2a-3,f′(x)min=f′(0)=0, 此時,0≤tanθ≤2a-3. 又∵θ∈[0,π),∴當3時,θ∈[0,arctan(2a-3)]. (3)函數(shù)y=f(x)與g(x)=x4-5x3+(2-m)x2+1(m∈R)的圖象恰有3個交點,等價于方程-x3+x2+1=x4-5x3+(2-m)x2+1恰有3個不等實根, ∴x4-4x3+(1-m)x2=0, 顯然x=0是其中一個根(二重根), 方程x2-4x+(1-m)=0有兩個非零不等實根,則 ∴m>-3且m≠1 故當m>-3且m≠1時,函數(shù)y=f(x)與y=g(x)的圖象恰有3個交點. 希望對大家有所幫助,多謝您的瀏覽!

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!