履帶式起重機(jī)設(shè)計(jì)
履帶式起重機(jī)設(shè)計(jì),履帶式,起重機(jī),設(shè)計(jì)
摘要
本文介紹了履帶式起重機(jī)發(fā)展國內(nèi)外的歷史背景,分析了履帶式起重機(jī)整體結(jié)構(gòu)和工作特點(diǎn),重點(diǎn)介紹了履帶式起重機(jī)的重要參數(shù),吊鉤的設(shè)計(jì),整體的液壓體統(tǒng),履帶輪等相關(guān)數(shù)據(jù)。本文對(duì)原有的履帶式起重機(jī)進(jìn)行實(shí)驗(yàn)分析,然后根據(jù)實(shí)驗(yàn)的結(jié)果完成了對(duì)現(xiàn)有履帶式起重機(jī)構(gòu)進(jìn)行結(jié)構(gòu)優(yōu)化和設(shè)計(jì)。新型的履帶式起重機(jī)將原有的機(jī)械傳動(dòng)方式改為液壓傳動(dòng)的方式;采用的履帶式結(jié)構(gòu),使得起重機(jī)可以適應(yīng)各種不同的工況地形,方便工作。
本文對(duì)履帶式起重機(jī)進(jìn)行了三維建模分析,對(duì)整體結(jié)構(gòu)進(jìn)行了分析,改進(jìn)采用了液壓裝置,能很好的應(yīng)用于機(jī)械工程中。
工程實(shí)踐中吊裝方案設(shè)計(jì)仍然停留在傳統(tǒng)模式,采用手工校核方式選擇吊索具、通過查閱性能表選擇起重機(jī)、利用AutoCAD等常規(guī)二維繪圖軟件設(shè)計(jì)吊裝過程等。這種傳統(tǒng)設(shè)計(jì)方法嚴(yán)重依賴設(shè)計(jì)者的經(jīng)驗(yàn),需要多次迭代,設(shè)計(jì)周期長,吊裝前無法全面、直觀地查看動(dòng)態(tài)的吊裝過程。
在此背景下,計(jì)算機(jī)輔助吊裝方案設(shè)計(jì)(CALPAD)技術(shù)應(yīng)運(yùn)而生。其中,起重機(jī)選型可快速選擇合適的起重機(jī),而路徑規(guī)劃及吊裝仿真可直觀、快捷地設(shè)計(jì)吊裝過程并進(jìn)行預(yù)演。然而,通過對(duì)比工程需求和現(xiàn)有研究發(fā)現(xiàn):對(duì)應(yīng)用廣泛的桁架臂履帶起重機(jī)選型較少;單機(jī)吊裝路徑規(guī)劃未考慮起重機(jī)的行走;雙機(jī)吊裝仿真研究較少,現(xiàn)有方法待設(shè)置參數(shù)多且難以確定。由于大多現(xiàn)有研究缺乏對(duì)某些工程約束的考慮,
致使其難以真正應(yīng)用到實(shí)際吊裝工程。
為此,本文在多重約束下起重機(jī)智能選型、考慮行走的單機(jī)吊裝路徑規(guī)劃、雙機(jī)吊裝仿真三方面開展研究并實(shí)現(xiàn)相應(yīng)的軟件,所形成的理論成果和軟件已成功應(yīng)用到實(shí)際吊裝工程。本文主要研究工作如下:
1.給出了一種面向移動(dòng)式起重機(jī)的多重約束起重機(jī)選型算法。首先構(gòu)建了多重約束的起重機(jī)選型數(shù)學(xué)模型,基于此給出了選型算法的總體框架,然后以桁架臂履帶起重機(jī)為例詳細(xì)闡述了算法框架中起重性能、被吊物與臂架間距、接地比壓約束處理的實(shí)現(xiàn),最后通過實(shí)例驗(yàn)證了算法的可用性和有效性。與現(xiàn)有選型算法相比,技術(shù)上該算法將復(fù)雜三維空間距離計(jì)算問題轉(zhuǎn)化為二維幾何計(jì)算,降低了間距約束處理難度;該算法由于無需起重機(jī)、被吊物三維建模,在應(yīng)用上更加便捷。
2.提出了一種考慮行走的單臺(tái)履帶起重機(jī)吊裝路徑規(guī)劃算法。首先對(duì)規(guī)劃問題進(jìn)行數(shù)學(xué)建模,并設(shè)計(jì)了基于RRT-Connect++的吊裝路徑規(guī)劃算法,給出了位形空間的定義、兩位形間的距離度量、履帶起重機(jī)非完整運(yùn)動(dòng)學(xué)約束的表達(dá),最后通過三個(gè)仿真實(shí)驗(yàn)驗(yàn)證算法的有效性和性能,結(jié)果表明該算法能在各種復(fù)雜吊裝環(huán)境中找到一條無超載、無碰撞可行路徑。算法將履帶起重機(jī)行走的非完整運(yùn)動(dòng)學(xué)約束融入算法中,使路徑更自然、平滑。此外,其中的距離度量將長度量綱和角度量綱巧妙地統(tǒng)一起來較好地表達(dá)吊裝路徑長度,并且賦予距離度量直觀物理意義,避免了為每個(gè)分量設(shè)置權(quán)重系數(shù)。
?3.提出了一種基于空間幾何約束的雙機(jī)協(xié)同吊裝仿真方法。針對(duì)典型吊裝工況的雙機(jī)吊裝仿真問題,研究了雙機(jī)之間的協(xié)同,設(shè)計(jì)了雙機(jī)協(xié)同吊裝仿真模型,給出了雙機(jī)系統(tǒng)基本動(dòng)作的表達(dá)與設(shè)計(jì)。通過實(shí)例驗(yàn)證仿真方法的可用性和有效性,結(jié)果表明該方法可容易地模擬典型工況的雙機(jī)吊裝過程。由于雙機(jī)的協(xié)同策略已嵌入基本動(dòng)作的實(shí)現(xiàn),因此,在典型雙機(jī)吊裝中該方法吊裝過程仿真更準(zhǔn)確、仿真操作更簡便。此外,該方法將兩臺(tái)起重機(jī)和被吊物看成一個(gè)完整的復(fù)雜系統(tǒng)稱為雙機(jī)系統(tǒng)),該概念為雙機(jī)協(xié)同吊裝的其它研究提供了一個(gè)全新的視角。
4.提出了一種基于正向運(yùn)動(dòng)學(xué)的雙機(jī)吊裝仿真通用方法。首先從靜力學(xué)的角度探究雙機(jī)吊裝中起升系統(tǒng)部分的運(yùn)動(dòng)學(xué)規(guī)律,利用最小勢能原理將起升系統(tǒng)部分的運(yùn)動(dòng)學(xué)抽象為帶約束的數(shù)學(xué)優(yōu)化問題,提出基于最小勢能原理的起升繩偏擺角及起升力求解算法,通過與ADAMS仿真結(jié)果對(duì)比驗(yàn)證了求解算法的正確性。然后在此基礎(chǔ)上設(shè)計(jì)了基于正向運(yùn)動(dòng)學(xué)的雙機(jī)吊裝仿真通用方法。最后通過實(shí)例驗(yàn)證方法的可用性和有效性,結(jié)果表明該方法是一種設(shè)計(jì)和預(yù)演雙機(jī)吊裝過程的有效手段。相比現(xiàn)有基于動(dòng)力學(xué)的雙機(jī)吊裝仿真方法,該方法僅需被吊物的重心相對(duì)位置及重量即可準(zhǔn)確求得吊裝過程中被吊物位姿及起升力,為雙機(jī)吊裝仿真提供有力的支撐,可容易地嵌入吊裝仿真軟件中,實(shí)現(xiàn)實(shí)時(shí)的雙機(jī)吊裝作業(yè)仿真,具有參數(shù)少、實(shí)時(shí)等特點(diǎn)。
關(guān)鍵詞: 履帶式起重機(jī);結(jié)構(gòu)設(shè)計(jì); 三維建模
3
Abstract
This article describes the historical background of the development of domestic crawler cranes, crawler cranes overall analysis of the structure and operation characteristics, focusing on the important parameters related data crawler cranes, hook design, the overall hydraulic decency, track wheel. In this paper, the original crawler crane experimental analysis, and then complete the existing crawler crane mechanism and structural design optimization based on experimental results. The new crawler crane to the original mechanical transmission hydraulic transmission mode; crawler structure used so cranes can adapt to different terrain conditions, to facilitate the work.
In this paper, crawler crane 3D modeling analysis, the overall structure is analyzed and improved using a hydraulic device, it can be well used in mechanical engineering.
?Engineering practice lifting program design still remain in the traditional mode, manually checking mode selection sling, crane selection by referring to the performance table, the use of conventional two-dimensional drawing software AutoCAD and other design lifting processes. This traditional design approach relies heavily on the designer's experience, require multiple iterations, long design cycles, not fully before lifting, visualize dynamic lifting process.
?In this context, computer-aided design lifting (CALPAD) technology emerged. Among them, the crane can quickly select the appropriate selection of the crane, and hoisting path planning and simulation can be intuitive and quick lifting process design and preview. However, by comparing the project needs and existing research found that: the application of a wide range of lattice boom crawler cranes less selection; single lifting crane walking path planning is not considered; less simulation of dual-lifting, the conventional method many parameters to be set and it is difficult to determine. Since most existing research projects lack of consideration of certain constraints,
So that it is difficult to apply to real actual hoisting.
In this paper, crane under multiple constraints intelligent selection, consider walking path planning lifting single, dual lifting three simulation research and implement the appropriate software, theoretical results and software form has been successfully applied to the actual hoisting. The main research work are as follows:
1.Shows the multiple constraints crane selection algorithm for mobile crane. First, we constructed a mathematical model of multiple crane selection constraints, based on this selection gives the overall framework of the algorithm, then lattice boom crawler crane for example detail the algorithm performance lifting frame, hanging objects and arm spacing, ground pressure constraint implementation process Finally, an example to verify the availability and effectiveness of the algorithm. Compared with the existing selection algorithm, the algorithm will be technically complex three-dimensional spatial distance computation problem into a two-dimensional geometry calculations, reducing the spacing constraint difficult to deal with; the algorithm because no crane was lifting three-dimensional modeling objects in the application more convenient.
2. The proposed consider walking a single crawler crane hoisting path planning algorithm. First planning mathematical modeling and design based on RRT-Connect ++ lifting path planning algorithm, gives the definition of the configuration space, the distance measure between two shaped expression, crawler cranes nonholonomic kinematic constraints, and finally availability and performance through three simulation verification algorithm, the results show that the algorithm can be found in a variety of complex environments without lifting overload, collision-free path feasible. Algorithm nonholonomic kinematic constraint crawler crane walking into the algorithm to make the path more natural, smooth. In addition, where the distance metric length dimensions and angle dimension subtly unify better expression lifting path length, and the distance measure gives intuitive physical meaning, avoid setting the weighting factor for each component.
3. The proposed based on dual-lifting collaborative simulation geometry of space constraints. For typical simulation for dual-hoisting hoisting working condition, collaborative research between the two planes, designed dual-lifting collaborative simulation model are given expression and design of the basic operation of the dual system. Examples of the availability and effectiveness of the verification by simulation method, the results show that this method can be easily simulated dual-lifting process typical operating conditions. Since the cooperative strategy is embedded dual machine to achieve the basic operation, therefore, in a typical dual-lifting in the lifting process simulation method is more accurate simulation easier to use. In addition, the method of two cranes and hanging objects as a whole complex system called dual system), the concept of Double other aircraft Cooperative hoisting provides a fresh perspective.
4. Proposes a forward kinematics of the double ceiling mount Common Simulation Method. First, from the point of view of statics inquiry Duplex Lifting lifting system from the kinematics law section, the principle of minimum potential energy will play a part of the lifting system kinematics abstract as a constrained mathematical optimization problem, since the principle of minimum potential energy of hoisting ropes yaw angle and lift from the algorithm, with the ADAMS simulation results verify the correctness of the algorithm. Then on the basis of the forward kinematics design double ceiling mount Common Simulation Method. Finally, the availability and effectiveness of the verification method for instance, the results show that the method is an effective means to design and preview dual-lifting process. Compared to conventional dual-based dynamics simulation hoisting method, which only needs to be the center of gravity relative to the position and weight of the hanging objects can be accurately determined during the lifting posture and hanging objects from the lift for lifting dual-emulation provided strong support, can be easily embedded hoisting simulation software for real-time dual-lifting operation simulation, with less parameters, real-time characteristics.
Key words: Crawler Crane; The Structure Design; Three Modeling
目 錄
第一章國內(nèi)外發(fā)展現(xiàn)狀 2
1.1國外履帶式起重機(jī)發(fā)展現(xiàn)狀 2
1.1.1 利勃海爾公司 2
1.1.2 特雷克斯德馬格公司 2
1.1.3 馬尼托瓦克公司 2
1.2 國內(nèi)履帶式起重機(jī)發(fā)展現(xiàn)狀 3
1.3 履帶起重機(jī)的發(fā)展趨勢 3
第二章 履帶式起重機(jī)的重要參數(shù) 5
2.1 起重量Q 5
2.2 工作幅度R和有效幅度A 5
2.3 起重力矩M 5
2.4 起升高度H 6
2.5 工作速度V 6
第三章 吊鉤的參數(shù)設(shè)計(jì) 8
3.1 吊鉤的結(jié)構(gòu)設(shè)計(jì) 8
3.2 吊鉤的類型及其選擇類型 9
3.3 吊鉤尺寸的設(shè)計(jì)計(jì)算 10
第四章 發(fā)動(dòng)機(jī)的選擇及其發(fā)動(dòng)機(jī)發(fā)熱條件 13
4.1 發(fā)動(dòng)機(jī)的選擇及發(fā)熱條件 13
第五章履帶式起重機(jī)液壓系統(tǒng) 14
9
沈陽化工大學(xué)科亞學(xué)院學(xué)士學(xué)位論文 致謝
5.1液壓系統(tǒng)整體介紹 16
5.2 整體的性能分析 16
5.3 液壓傳動(dòng)總結(jié) 17
第六章履帶式起重機(jī)操作注意事項(xiàng) 18
第七章基于Solidworks軟件進(jìn)行的建模及裝配 22
7.1 Solidworks軟件建模與裝配概述 22
7.2 運(yùn)用Solidworks軟件進(jìn)行零件設(shè)計(jì) 22
7.3 運(yùn)用Solidworks軟件進(jìn)行零件裝配 25
第八章 結(jié)論與展望 26
8.1 結(jié)論 26
8.2 展望 27
參考文獻(xiàn) 28
致謝 29
收藏