高三數(shù)學二輪復習 專題限時集訓12 專題4 突破點12 立體幾何中的向量方法 理-人教高三數(shù)學試題

上傳人:文*** 文檔編號:240690827 上傳時間:2024-04-30 格式:DOC 頁數(shù):6 大?。?03KB
收藏 版權(quán)申訴 舉報 下載
高三數(shù)學二輪復習 專題限時集訓12 專題4 突破點12 立體幾何中的向量方法 理-人教高三數(shù)學試題_第1頁
第1頁 / 共6頁
高三數(shù)學二輪復習 專題限時集訓12 專題4 突破點12 立體幾何中的向量方法 理-人教高三數(shù)學試題_第2頁
第2頁 / 共6頁
高三數(shù)學二輪復習 專題限時集訓12 專題4 突破點12 立體幾何中的向量方法 理-人教高三數(shù)學試題_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高三數(shù)學二輪復習 專題限時集訓12 專題4 突破點12 立體幾何中的向量方法 理-人教高三數(shù)學試題》由會員分享,可在線閱讀,更多相關(guān)《高三數(shù)學二輪復習 專題限時集訓12 專題4 突破點12 立體幾何中的向量方法 理-人教高三數(shù)學試題(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題限時集訓(十二)立體幾何中的向量方法建議用時:45分鐘1(2016北京高考)如圖129,在四棱錐PABCD中,平面PAD平面ABCD,PAPD,PAPD,ABAD,AB1,AD2,ACCD.圖129 (1)求證:PD平面PAB.(2)求直線PB與平面PCD所成角的正弦值(3)在棱PA上是否存在點M,使得BM平面PCD?若存在,求的值;若不存在,說明理由解(1)證明:因為平面PAD平面ABCD,ABAD,所以AB平面PAD.所以ABPD.2分又因為PAPD,所以PD平面PAB.4分(2)取AD的中點O,連接PO,CO.因為PAPD,所以POAD.又因為PO平面PAD,平面PAD平面ABCD,

2、所以PO平面ABCD.因為CO平面ABCD,所以POCO.因為ACCD,所以COAD.5分如圖,建立空間直角坐標系Oxyz.由題意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,1,0),P(0,0,1).6分設(shè)平面PCD的法向量為n(x,y,z),則即令z2,則x1,y2.所以n(1,2,2).8分又(1,1,1),所以cosn,.所以直線PB與平面PCD所成角的正弦值為.10分(3)設(shè)M是棱PA上一點,則存在0,1使得.11分因此點M(0,1,),(1,).12分因為BM平面PCD,所以要使BM平面PCD當且僅當n0,即(1,)(1,2,2)0.解得.所以在棱PA上存在點

3、M使得BM平面PCD,此時.14分2(2016四川高考)如圖1210,在四棱錐PABCD中,ADBC,ADCPAB90,BCCDAD,E為棱AD的中點,異面直線PA與CD所成的角為90.圖1210(1)在平面PAB內(nèi)找一點M,使得直線CM平面PBE,并說明理由;(2)若二面角PCDA的大小為45,求直線PA與平面PCE所成角的正弦值. 【導學號:85952045】 解(1)在梯形ABCD中,AB與CD不平行如圖(1),延長AB,DC,相交于點M(M平面PAB),點M即為所求的一個點.2分(1)理由如下:由已知,知BCED,且BCED,所以四邊形BCDE是平行四邊形,從而CMEB.4分又EB平面

4、PBE,CM平面PBE,所以CM平面PBE.6分(說明:延長AP至點N,使得APPN,則所找的點可以是直線MN上任意一點)(2)法一:由已知,CDPA,CDAD,PAADA,所以CD平面PAD,從而CDPD,所以PDA是二面角PCDA的平面角,所以PDA45.7分設(shè)BC1,則在RtPAD中,PAAD2.如圖(1),過點A作AHCE,交CE的延長線于點H,連接PH,易知PA平面ABCD,從而PACE,于是CE平面PAH.所以平面PCE平面PAH.9分過A作AQPH于Q,則AQ平面PCE,所以APH是PA與平面PCE所成的角在RtAEH中,AEH45,AE1,所以AH.在RtPAH中,PH,所以s

5、inAPH.12分法二:由已知,CDPA,CDAD,PAADA,所以CD平面PAD,于是CDPD.從而PDA是二面角PCDA的平面角,所以PDA45.又PAAB,所以PA平面ABCD.7分(2)設(shè)BC1,則在RtPAD中,PAAD2,作Ay平面PAD,以A為原點,以,的方向分別為x軸、z軸的正方向,建立如圖(2)所示的空間直角坐標系A(chǔ)xyz,則A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以(1,0,2),(1,1,0),(0,0,2).9分設(shè)平面PCE的法向量為n(x,y,z),由得設(shè)x2,解得n(2,2,1).10分設(shè)直線PA與平面PCE所成角為,則sin ,所

6、以直線PA與平面PCE所成角的正弦值為.12分3(2016石家莊一模)在平面四邊形ACBD(如圖1211(1)中,ABC與ABD均為直角三角形且有公共斜邊AB,設(shè)AB2,BAD30,BAC45,將ABC沿AB折起,構(gòu)成如圖1211(2)所示的三棱錐CABD,且使CD.(1)(2)圖1211(1)求證:平面CAB平面DAB;(2)求二面角ACDB的余弦值 【導學號:85952046】解(1)證明:取AB的中點O,連接CO,DO,在RtACB,RtADB中,AB2,CODO1.又CD,CO2DO2CD2,即COOD.2分又COAB,ABODO,AB,OD平面ABD,CO平面ABD.4分又CO平面A

7、BC,平面CAB平面DAB.5分(2)以O(shè)為原點,AB,OC所在的直線分別為y軸,z軸,建立如圖所示的空間直角坐標系則A(0,1,0),B(0,1,0),C(0,0,1),D,(0,1,1),(0,1,1),.6分設(shè)平面ACD的法向量為n1(x1,y1,z1),則即令z11,則y11,x1,n1(,1,1).8分設(shè)平面BCD的法向量為n2(x2,y2,z2),則即令z21,則y21, x2,n2,10分cosn1,n2,二面角ACDB的余弦值為.12分4(2016鄭州二模)如圖1212,在梯形ABCD中,ABCD,ADDCCB1,BCD120,四邊形BFED為矩形,平面BFED平面ABCD,B

8、F1.圖1212(1)求證:AD平面BFED;(2)點P在線段EF上運動,設(shè)平面PAB與平面ADE所成銳二面角為,試求的最小值解(1)證明:在梯形ABCD中,ABCD,ADDCCB1,BCD120,AB2.BD2AB2AD22ABADcos 603.2分AB2AD2BD2,ADBD.平面BFED平面ABCD,平面BFED平面ABCDBD,DE平面BFED,DEDB,DE平面ABCD,4分DEAD,又DEBDD,AD平面BFED.6分(2)由(1)可建立以直線DA,DB,DE為x軸、y軸、z軸的如圖所示的空間直角坐標系,令EP(0),則D(0,0,0),A(1,0,0),B(0,0),P(0,1),(1,0),(0,1).8分設(shè)n1(x,y,z)為平面PAB的法向量,由得取y1,則n1(,1,)n2(0,1,0)是平面ADE的一個法向量,cos .0,當時,cos 有最大值,的最小值為.12分

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!