《(課程標(biāo)準(zhǔn)卷地區(qū)專用)高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)(十五)A第15講 圓錐曲線熱點(diǎn)問題配套作業(yè) 文(解析版)》由會員分享,可在線閱讀,更多相關(guān)《(課程標(biāo)準(zhǔn)卷地區(qū)專用)高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)(十五)A第15講 圓錐曲線熱點(diǎn)問題配套作業(yè) 文(解析版)(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、專題限時(shí)集訓(xùn)(十五)A
[第15講 圓錐曲線熱點(diǎn)問題]
(時(shí)間:45分鐘)
1.已知方程+=1(k∈R)表示焦點(diǎn)在x軸上的橢圓,則k的取值范圍是( )
A.k<1或k>3 B.11 D.k<3
2.已知兩定點(diǎn)F1(-1,0)、F2(1,0)且|F1F2|是|PF1|與|PF2|的等差中項(xiàng),則動點(diǎn)P的軌跡方程是( )
A.+=1
B.+=1
C.+=1
D.+=1
3.以拋物線y2=8x上的任意一點(diǎn)為圓心作圓與直線x+2=0相切,這些圓必過一定點(diǎn),則這一定點(diǎn)的坐標(biāo)是(
2、 )
A.(0,2) B.(2,0)
C.(4,0) D.(0,4)
4.雙曲線-=1(a>0,b>0)的兩條漸近線將平面劃分為“上、下、左、右”四個(gè)區(qū)域(不含邊界),若點(diǎn)(1,2)在“上”區(qū)域內(nèi),則雙曲線離心率e的取值范圍是( )
A.(,+∞) B.(,+∞)
C.(1,) D.(1,)
5.設(shè)M(x0,y0)為拋物線C:x2=8y上一點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),以F為圓心、|FM|為半徑的圓和拋物線C的準(zhǔn)線相交于不同兩點(diǎn),則y0的取值范圍是( )
A.(0,2) B.[0,2]
C.(2,+∞) D.[2,+∞)
6.已知兩點(diǎn)M(-2,0),N(
3、2,0),點(diǎn)P為坐標(biāo)平面內(nèi)的動點(diǎn),滿足||·||+·=0,則動點(diǎn)P(x,y)的軌跡方程是( )
A.y2=8x B.y2=-8x
C.y2=4x D.y2=-4x
7.已知橢圓C1:+=1與雙曲線C2:-=1共焦點(diǎn),則橢圓C1的離心率e的取值范圍為( )
A.,1 B.0,
C.(0,1) D.0,
8.已知拋物線方程為y2=4x,直線l的方程為x-y+4=0,在拋物線上有一動點(diǎn)P到y(tǒng)軸的距離為d1,P到直線l的距離為d2,則d1+d2的最小值為( )
A.+2 B.+1
C.-2 D.-1
9.雙曲線-=1(a,b>0)一條漸近線的傾斜角為,離心率為e,則
4、的最小值為________.
10.設(shè)橢圓+=1(a>b>0)的中心、右焦點(diǎn)、右頂點(diǎn)依次分別為O、F、G,且直線x=與x軸相交于點(diǎn)H,則最大時(shí)橢圓的離心率為________.
11.正方體ABCD-A1B1C1D1的棱長為1,點(diǎn)M在棱AB上,AM=,點(diǎn)P是平面ABCD內(nèi)的動點(diǎn),且點(diǎn)P到直線A1D1的距離與點(diǎn)P到M的距離的平方差為,則P點(diǎn)的軌跡是________.
12.已知焦點(diǎn)在x軸上的橢圓C過點(diǎn)(0,1),且離心率為,Q為橢圓C的左頂點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),若直線l垂直于x軸,求∠AQB的大?。?
5、
13.在平面直角坐標(biāo)系xOy中,點(diǎn)E到兩點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之和為2,設(shè)點(diǎn)E的軌跡為曲線C.
(1)寫出C的方程;
(2)設(shè)過點(diǎn)F2(1,0)的斜率為k(k≠0)的直線l與曲線C交于不同的兩點(diǎn)M,N,點(diǎn)P在y軸上,且|PM|=|PN|,求點(diǎn)P縱坐標(biāo)的取值范圍.
14.已知橢圓+=1(a>b>0)的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A,C,上頂點(diǎn)為B,O為原點(diǎn),P為橢圓上任意一點(diǎn),過F,B,C三點(diǎn)的圓的圓心坐標(biāo)為(m,n).
(1)當(dāng)m+n≤0時(shí),求橢
6、圓的離心率的取值范圍;
(2)在(1)的條件下,橢圓的離心率最小時(shí),若點(diǎn)D(b+1,0),(+)·的最小值為,求橢圓的方程.
專題限時(shí)集訓(xùn)(十五)A
【基礎(chǔ)演練】
1.B [解析] 由題意,解得1
7、[解析] 雙曲線的漸近線方程為y=±x,由于點(diǎn)(1,2)在上區(qū)域,故2>,所以e==<.又e>1,所以所求的范圍是(1,).
【提升訓(xùn)練】
5.C [解析] 圓心到準(zhǔn)線的距離為4,由題意只要|FM|>4即可,而|FM|=y(tǒng)0+2,∴y0>2.
6.B [解析] 根據(jù)||·||+·=0得4+4(x-2)=0,即(x+2)2+y2=(x-2)2,即y2=-8x.
7.A [解析] 根據(jù)已知只能m>0,n>0,且m+2-n=m+n,即n=1,所以橢圓的離心率為e==.由于m>0,所以1->,所以
8、=d2+|PF|-1,顯然當(dāng)PF垂直于直線x-y+4=0時(shí),d1+d2最小.此時(shí)d2+|PF|為點(diǎn)F到直線x-y+4=0的距離為=,∴d1+d2的最小值為-1.
9. [解析] 已知即=,此時(shí)b=a且雙曲線的離心率為=2,所以=≥=,等號當(dāng)且僅當(dāng)a=時(shí)成立.
10. [解析] 根據(jù)已知O(0,0),F(xiàn)(c,0),G(a,0),H,0,所以===e-e2=-e-2+≤,所以當(dāng)最大時(shí)e=.
11.拋物線 [解析] 如圖,以點(diǎn)A為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,設(shè)P(x,y),則P到A1D1`的距離為,P到點(diǎn)M的距離為,根據(jù)已知得1+x2-x-2-y2=,化簡即得y2=x,故點(diǎn)P的軌跡為拋物線.
9、
12.解:(1)設(shè)橢圓C的標(biāo)準(zhǔn)方程為+=1(a>b>0),且a2=b2+c2.
由題意可知:b=1,=.
解得a2=4,所以橢圓C的標(biāo)準(zhǔn)方程為+y2=1.
(2)由(1)得Q(-2,0).設(shè)A(x1,y1),B(x2,y2).
由直線l垂直于x軸時(shí),則直線l的方程為x=-.
由
解得 或
不妨設(shè)點(diǎn)A在x軸上方,則A,B,
則直線AQ的斜率kAQ==1,
直線BQ的斜率kBQ==-1.
因?yàn)閗AQ·kBQ=-1,
所以AQ⊥BQ,
所以∠AQB=,即∠AQB的大小為.
13.解:(1)由題設(shè)知|EF1|+|EF2|=2>|F1F2|,
根據(jù)橢圓的定義,點(diǎn)E
10、的軌跡是焦點(diǎn)為F1,F(xiàn)2,長軸長為2的橢圓.
設(shè)其方程為+=1(a>b>0),
則c=1,a=,b=1,所以E的方程為+y2=1.
(2)依題設(shè)直線l的方程為y=k(x-1).
將y=k(x-1)代入+y2=1并整理得
(2k2+1)x2-4k2x+2k2-2=0,
Δ=8k2+8>0.
設(shè)M(x1,y1),N(x2,y2),
則x1+x2=,x1x2=.
設(shè)MN的中點(diǎn)為Q,則xQ=,yQ=k(xQ-1)=-,即Q,.
因?yàn)閗≠0,
所以直線MN的垂直平分線的方程為
y+=-x-.
令x=0解得yP==.
當(dāng)k>0時(shí),因?yàn)?k+≥2,所以0
11、因?yàn)?k+≤-2,所以-≤yP<0.
綜上,點(diǎn)P縱坐標(biāo)的取值范圍是-,0∪0,.
14.解:(1)設(shè)半焦距為c,由題意得FC,BC的中垂線方程分別為x=,y-=,
于是圓心坐標(biāo)為.
所以m+n=+≤0,即ab-bc+b2-ac≤0,
即(a+b)(b-c)≤0,所以b≤c,于是b2≤c2,即a2=b2+c2≤2c2,
所以e2=≥,即≤e<1.
(2)由(1)知emin=,a=b=c,此時(shí)橢圓方程為+=1.
設(shè)P(x,y),則-c≤x≤c,所以(+)·=x2-x+c2=(x-1)2+c2-.
當(dāng)c≥時(shí),上式的最小值為c2-,即c2-=,求得c=2;
當(dāng)0