喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有,圖紙均為CAD原圖,有疑問咨詢QQ:414951605 或1304139763
寧畢業(yè)設計(論文)
四自由度關節(jié)型機器人設計
所在學院
專 業(yè)
班 級
姓 名
學 號
指導老師
年 月 日
摘 要
機器人是一種典型的機電一體化產(chǎn)品,仿人型機器人是機器人研究領域的熱點。研究仿人型機器人需要結合機械、電子、信息論、人工智能、生物學以及計算機等諸多學科知識,同時其自身的發(fā)展也促進了這些學科的發(fā)展。
本文對一種四自由度關節(jié)型機器人進行設計,并完成總裝配圖和零件圖的繪制。要求對機器人模型進行靜力學分析,估算各關節(jié)所需轉矩和功率,完成電機和減速器的選型。其次從電機和減速器的連接和固定出發(fā),設計關節(jié)結構,并對機構中的重要連接件進行強度校核。
關鍵詞:機械臂,結構設計,關節(jié)型機器人,結構分析
31
四自由度關節(jié)型機器人的設計
Abstract
The robot is a typical mechatronics product, humanoid robot research field. Research of humanoid robot requires a combination of mechanical, electronic, information theory, artificial intelligence, biological and computer and other disciplines of knowledge, at the same time, its development has promoted the development of these disciplines.
This paper is a method used in engine valve on the robot arm size structure design, and complete the assembly drawing and parts drawing. Requirements of the robot model to static analysis, estimate the joint required torque and power of the motor and the reducer, completed the selection. Secondly, from the motor and the reducer are connected and fixed starting joint structure, design, and the mechanism of important connections of the strength check.
Key Words: Mechanical arm, structure design, joint type robot, structure analysis
目 錄
摘 要 II
Abstract 3
目 錄 4
第1章 緒論 6
1.1 引言 6
1.2 機器人的發(fā)展及技術 6
1.2.1 機器人的發(fā)展 6
1.2.2 機器人技術 7
1.3 機器人研究概況 7
1.3.1 國外研究現(xiàn)狀 7
1.3.2 國內研究現(xiàn)狀 8
1.4 本文主要研究內容 9
1.4.1 課題來源 9
1.4.2 主要內容 10
第2章 總體方案設計 10
2.1 機器人工程概述 10
2.2 工業(yè)機器人總體設計方案論述 11
2.3 機器人機械傳動原理 12
2.4 機器人總體方案設計 13
2.5 本章小結 14
第3章 機器人各部分的設計 15
3.1 機器人腰座結構的設計 15
3.2 機器人手臂的結構設計 15
3.3機器人腕部的結構設計 17
3.4 機器人末端執(zhí)行器(手爪)的設計 18
3.5 大小臂(關節(jié)2和關節(jié)3)電機的計算與型號選擇 18
3.6 主要零件材料的選擇與強度校核 19
3.7 臂部肘關節(jié)直齒圓錐齒輪傳動的設計 21
3.8 臂部電機的計算與選型 25
3.9本章小結 25
第4章 控制部分設計 27
總結與展望 29
致 謝 30
參 考 文 獻 31
第1章 緒論
1.1 引言
機器人是一種典型的機電一體化產(chǎn)品,仿人型機器人是機器人研究領域的熱點。研究仿人型機器人需要結合機械、電子、信息論、人工智能、生物學以及計算機等諸多學科知識,同時其自身的發(fā)展也促進了這些學科的發(fā)展。機器人是仿人型機器人的一種。
1959年,世界上誕生了第一臺工業(yè)機器人,開創(chuàng)了機器人發(fā)展的新紀元。隨著科學技術的發(fā)展,仿人型機器人的研究與應用迅猛發(fā)展。世界著名機器人專家、日本早稻田大學的加藤一郎教授說過:“機器人應當具有的最大特征之一是功能”。其中雙足是方式中自動化程度最高、最為復雜的動態(tài)系統(tǒng)。偉大的發(fā)明家愛迪生也曾說過這樣一句話:“上帝創(chuàng)造人類,兩條腿是最美妙的杰作”。系統(tǒng)具有非常豐富的動力學特性,對的環(huán)境要求很低,既能在平地上,也能在非結構性的復雜地面上,對環(huán)境有很好的適應性。功能的具備為擴大機器人的應用領域開辟了無限廣闊的前景。
研究機器人的原因和目的,主要有以下幾個方面:希望研制出機構,使它們能在許多結構和非結構環(huán)境中,以代替人進行作業(yè)或延伸和擴大人類的活動領域;希望更多得了解和掌握人類得特性,并利用這些特性為人類服務,例如:人造假肢。系統(tǒng)具有豐富的動力學特性,在這方面的研究可以拓寬力學及機器人的研究方向;機器人可以作為一種智能機器人在人工智能中發(fā)揮重要的作用。
1.2 機器人的發(fā)展及技術
1.2.1 機器人的發(fā)展
20世紀40年代,伴隨著遙控操縱器和數(shù)控制造技術的出現(xiàn),關于機器人技術的研究開始出現(xiàn)。60年代美國的ConsolidatedContr01公司研制出第一臺機器人樣機,并成立了Unimation公司,定型生產(chǎn)了Unimate機器人。20世紀70年代以來,工業(yè)機器人產(chǎn)業(yè)蓬勃興起,機器人技術逐漸發(fā)展為專門學哈爾濱工程大學碩十學位論文。1970年,第一次國際機器人會議在美國舉行。經(jīng)過幾十年的發(fā)展,數(shù)百種不同結構、不同控制系統(tǒng)、不同用途的機器人已進入了實用化階段。目前,盡管關于機器人的定義還未統(tǒng)一,但一般認為機器人的發(fā)展按照從低級到高級經(jīng)歷了三代。第一代機器人,主要指只能以“示教-再現(xiàn)”方式工作的機器人,其只能依靠人們給定的程序,重復進行各種操作。目前的各類工業(yè)機器人大都屬于第一代機器人。第二代機器人是具有一定傳感器反饋功能的機器人,其能獲取作業(yè)環(huán)境、操作對象的簡單信息,通過計算機處理、分析,機器人按照己編好的程序做出一定推理,對動作進行反饋控制,表現(xiàn)出低級的智能。當前,對第二代機器人的研究著重于實際應用與普及推廣上。第三代機器人是指具有環(huán)境感知能力,并能做出自主決策的自治機器人。它具有多種感知功能,可進行復雜的邏輯思維,判斷決策,在作業(yè)環(huán)境中可獨立行動。第三代機器人又稱為智能機器人,并己成為機器人學科的研究重點,但目前還處于實驗室探索階段。機器人技術己成為當前科技研究和應用的焦點與重心,并逐漸在工農(nóng)業(yè)生產(chǎn)和國防建設等方面發(fā)揮巨大作用。可以預見到,機器人將在21世紀人類社會生產(chǎn)和生活中扮演更加重要的角色。
1.2.2 機器人技術
機器人學是一門發(fā)展迅速的且具有高度綜合性的前沿學科,該學科涉及領域廣泛,集中了機械工程、電氣與電子工程、計算機工程、自動控制工程、生物科學以及人工智能等多種學科的最新科研成果,代表了機電一體化的最新成就。機器人充分體現(xiàn)了人和機器的各自特長,它比傳統(tǒng)機器具有更大的靈活性和更廣泛的應用范圍。機器人的出現(xiàn)和應用是人類生產(chǎn)和社會進步的需要,是科學技術發(fā)展和生產(chǎn)工具進化的必然。目前,機器人及其自動化成套裝備己成為國內外備受重視的高新技術應用領域,與此同時它正以驚人的速度向海洋、航空、航天、軍事、農(nóng)業(yè)、服務、娛樂等各個領域滲透。目前,雖然機器人的能力還是非常有限的,但是它正在迅速發(fā)展。隨著各學科的發(fā)展和社會需要的發(fā)展,機器人技術出現(xiàn)了許多新的發(fā)展方向和趨勢,如網(wǎng)絡機器人技術、虛擬機器人技術、協(xié)作機器人技術、微型機器人技術和機器人技術等。
1.3 機器人研究概況
1.3.1 國外研究現(xiàn)狀
最早系統(tǒng)地研究人類和動物運動原理的是Muybridge,他發(fā)明了電影用的獨特攝像機,即一組電動式觸發(fā)照相機,并在1877年成功地拍攝了許多四足動物和奔跑的連續(xù)照片。后來這種采用攝像機的方法又被Demeny用來研究人類的運動。從本世紀30年代到50年代,蘇聯(lián)的Bernstein從生物動力學的角度也對人類和動物的機理進行深入的研究,并就運動作了非常形象化的描述。
真正全面、系統(tǒng)地開展機器人的研究是始于本世紀60年代.迄今,不僅形成了機器人一整套較為完善的理論體系,而且在一些國家,如日本、美國和蘇聯(lián)等都已研制成功了能靜態(tài)或動態(tài)的機器人樣機。這一部分,我們主要介紹隊60年代到1985年這一時期,在機器人領域所取得的最重要進展。
在60年代和70年代,對機器人控制理論的研究產(chǎn)生了3種非常重要的控制方法,即有限狀態(tài)控制、模型參考控制和算法控制。這3種控制方法對各種類型的機器人都是適用的。有限狀態(tài)控制是由南斯拉夫的Tomovic在1961年提出來的 ,模型參考控制是由美國的Farnsworth在1975年提出來的,而算法控制則是由南斯拉夫米哈依羅·鮑賓研究所著名的機器人學專家Vukobratovic博士在1969年至1972年問提出來的。這3種控制方法之間有一定的內在聯(lián)系。有限狀態(tài)控制實質上是一種采樣化的模型參考控制,而算法控制則是一種居中的情況[1]。
在步態(tài)研究方面,蘇聯(lián)的Bessonov和Umnov定義了“最優(yōu)步態(tài)”,Kugushev和Jaro-
shevskij定義了自由步態(tài)。這兩種步態(tài)不僅適應于而且也適應于多足機器人。其中,自由步態(tài)是相對于規(guī)則步態(tài)而言的。如果地面非常粗糙不平,那么機器人在時,下一步腳應放在什么地方,就不能根據(jù)固定的步序來考慮,而是應該象登山運動員那樣走一步看一步,通過某一優(yōu)化準則來確定,這就是所謂的自由步態(tài)。
在機器人的穩(wěn)定性研究方面,美國的Hemami等人曾提出將系統(tǒng)的穩(wěn)定性和控制的簡化模型看作是一個倒立振子(倒擺),從而可以將的前進運動解釋為使振子直立的問題。此外,從減小控制的復雜性考慮,Hemami等人還曾就機器人的“降階模型”問題進行了研究。
前面我們曾指出Vukobratovic也對類人型系統(tǒng)進行了能量分析,但他僅限于導出各關節(jié)及整個系統(tǒng)的功率隨時間的變化關系,并沒有過多地涉及能耗最優(yōu)這個問題.但在他的研究中,Vukobratovic得出了一個有用的結論,即姿態(tài)越平滑,類人型系統(tǒng)所消耗的功率就越少。
1.3.2 國內研究現(xiàn)狀
國內機器人的研制工作起步較晚,我國是從20世紀80年代開始機器人領域的研究和應用的。1986年,我國開展了“七五”機器人攻關計劃,1987年,我國的“863”高技術計劃將機器人方面的研究開發(fā)列入其中。目前我國從事機器人研究與應用開發(fā)的單位主要是高校和有關科研院所等。最初我國進行機器人技術研究的主要目的是跟蹤國際先進的機器人技術,隨后取得了一定的成就。
哈爾濱工業(yè)大學自1986年開始研究機器人,先研制成功靜態(tài)雙足機器人HIT-I,高 110cm,重70kg,有10個自由度,實現(xiàn)平地上的前進、左右側行以及上下樓梯的運動,步幅45cm,步速為10秒/步,后來又相繼研制成功了HIT-II和HIT-III,重42kg,高 103cm,有12個自由度,實現(xiàn)了步長24cm,步速2.3步每秒的。目前正在研制的HI下IV機器人,全身可有52個自由度,其在運動速度和平衡性方面都優(yōu)于前三型機器人[3~7]。
國防科技大學在1988年春成功地研制了一臺平面型6自由度的雙足機器人KDW-1,它能前進、后退和上下樓梯,最大步幅為40cm,步速為4步每秒,1989年又研制出空間型 KDW-II,有10個自由度,高69cm,重13kg實現(xiàn)進退、上下臺階的靜態(tài)穩(wěn)定以及左右的準動態(tài)。1990年在KDW-II的平臺上增加兩個垂直關節(jié),發(fā)展成KDW-III,有12個自由度,具備了轉彎功能,實現(xiàn)了實驗室環(huán)境的全方位。1995年實現(xiàn)動態(tài),步速0.8步每秒,步長為20cm~22cm,最大斜坡角度達13度。2000年底在KDW-III的基礎上研制成功我國首臺仿人形機器人“先行者”,動態(tài),可在小偏差、不確定的環(huán)境,周期達每秒兩步,高1.4m,重20kg,有頭、眼、脖、身軀、雙臂、雙足,且具備一定的語言功能[8~13]。
此外,清華大學正在研制仿人形機器人THBIP-I,高1.7m,重130kg,32個自由度,在清華大學985計劃的支持下,項目也在不斷取得進展。南京航空航天大學曾研制了一臺8自由度空間型機器人,實現(xiàn)靜態(tài)功能[13,14]。
本課題源于“第一屆全國大學生機械創(chuàng)新設計大賽”中機器人。目前,機器人大多以輪子的形式實現(xiàn)功能階段。真正模仿人類用腿走路的機器人還不多,雖有一些六足、四足機器人涌現(xiàn),但是機器人還是鳳毛麟角。我們這個課題,探索設計僅靠巧妙的機械裝置和簡單的控制系統(tǒng)就能實現(xiàn)模擬人類的機器人。其分功能有:交替邁腿、搖頭、擺大臂、擺小臂。
1.4 本文主要研究內容
1.4.1 課題來源
隨著工業(yè)的不斷發(fā)展,對零部件生產(chǎn)的數(shù)量和質量都提出了更高的要求。為了提高生產(chǎn)效率和產(chǎn)品質量穩(wěn)定性,自動化生產(chǎn)已經(jīng)成為發(fā)展的必然趨勢。而機器人正是自動化生產(chǎn)中的重要工具。
1、 四自由度關節(jié)機器人主要參數(shù)
結構型式
垂直關節(jié)型
自由度
4
手爪張合
握緊/放松
手腕彎曲
-90~90度
小臂擺動
0~120度
大臂擺動
0~120度
腰部旋轉
-150~150度
工作空間半徑
300mm
工作空間高度
450mm
最大載荷
0.5kg
2、機器人工作要求
1)機器人必須小巧、靈活、拆卸方便,
2)機器人能夠完成抓取物體、搬運物體等功能
3)機器人自動化程度高,控制方便靈活。
1.4.2 主要內容
第1章 緒論 主要介紹機器人的相關知識和本課題研究的任務和要求.
第2章 總體方案設計,介紹該機器人各部分的相關知識和總體設計.
第3章 機器人各部分設計的介紹
第4章 機器人電路控制系統(tǒng)設計
第2章 總體方案設計
2.1 機器人工程概述
機器人工程是一門跨學科的綜合性技術,它涉及到力學、機構學、機械設計、氣動液壓技術、傳感技術、計算機技術和自動控制技術等學科領域。人們將已有學科分支中的知識有效地組合起來用以解決綜合性的工程問題的技術稱之為“系統(tǒng)工程學”。以機器人設計為例,系統(tǒng)工程學認為,應當將其作為一個系統(tǒng)來研究、開發(fā)和運用,從機器人的整體出發(fā)來研究其系統(tǒng)內部各組成部分之間的有機聯(lián)系和系統(tǒng)外部環(huán)境的相互關系的一種綜合性的設計方法。
從系統(tǒng)功能的觀點來看,將一部復雜的機器看成是一個系統(tǒng),它由若干個子系統(tǒng)按一定規(guī)律有機地聯(lián)系在一起,是一個不可分的整體。如果將系統(tǒng)拆開、則將失去作為一個整體的特定功能。因此,在設計一部較復雜的機器時,從機器系統(tǒng)的概念出發(fā),這個系統(tǒng)應具有如下特性:
(1) 整體性 由若干個不同性能的子系統(tǒng)構成的一個總的機械系統(tǒng)應具有作為一個整體的特定功能。
(2) 相關性 系統(tǒng)內各子系統(tǒng)之間有機聯(lián)系、有機作用,具有某種相互關聯(lián)的特性。
(3) 目的性 每個系統(tǒng)都應有明確的目的和功能,系統(tǒng)的結構、系統(tǒng)內各子系統(tǒng)的組合方式?jīng)Q定于系統(tǒng)的目的和功能。
(4) 環(huán)境適應性 任何一個系統(tǒng)都存在于一定的環(huán)境中,必須能適應外部環(huán)境的變化。
因此,在進行機器人設計時,不僅要重視組成機器人系統(tǒng)的各個部件、零件的設計,更應該按照系統(tǒng)工程學的觀點,根據(jù)機器人的功能要求,將組成機器人系統(tǒng)的各個子系統(tǒng)部件、零件合理地組合,設計出性能優(yōu)良適于工作需要的機器人產(chǎn)品。在比較復雜的工業(yè)機器人系統(tǒng)中大致包括如下:操作機,它是完成機器人工作任務的主體,包括機座、手臂、手腕、末端執(zhí)行器和機構等。驅動系統(tǒng),它包括作為動力源的驅動器,驅動單元,伺服驅動系統(tǒng)由各種傳動零、部件組成的傳動系統(tǒng)??刂葡到y(tǒng),它主要包括具有運算、存儲功能的電子控制裝置(計算機或其他可編程編輯控制裝置),人——機接口裝置(鍵盤、示教盒等),各種傳感器的信息放大、傳輸和處理裝置,傳感器、離線編程、設備的輸入/輸出通訊接口,內部和外部傳感器以及其他通用或專用的外圍設備[14]。
工業(yè)機器人的特點在于它在功能上的通用性和重新調整的柔性,因而工業(yè)機器人能有效地應用于柔性制造系統(tǒng)中來完成傳送零件或材料,進行裝配或其他操作。在柔性制造系統(tǒng)中,基本工藝設備(如數(shù)控機床、鍛壓、焊接、裝配等生產(chǎn)設備)、輔助生產(chǎn)設備、控制裝置和工業(yè)機器人等一起形成了各種不同形式地工業(yè)機器人技術綜合體地工業(yè)機器人系統(tǒng)。在其他非制造業(yè)地生產(chǎn)部門,如建筑、采礦、交通運輸?shù)壬a(chǎn)領域引用機器人系統(tǒng)亦是如此。
2.2 工業(yè)機器人總體設計方案論述
(一) 確定負載
目前,國內外使用的工業(yè)機器人中,負載能力的范圍很大,最小的額定負載在5N以下,最大可達9000N。負載大小的確定主要是考慮沿機器人各運動方向作用于機械接口處的力和扭矩。其中應包括機器人末端執(zhí)行器的重量、抓取工件或作業(yè)對象的重量和規(guī)定速度和加速度條件下,產(chǎn)生的慣性力等。由本次設計給的設計參數(shù)可初估本次設計屬于小負載。
(二) 驅動方式
由于伺服電機具有控制性能好,控制靈活性強,可實現(xiàn)速度、位置的精確控制,對環(huán)境沒有影響,體積小,效率高,適用于運動控制要求嚴格的中、小型機器人等特點,故本次設計采用了伺服電機驅動
(三)傳動系統(tǒng)設計
機器人傳動裝置中應盡可能做到結構緊湊、重量輕、轉動慣量和體積小,在傳動鏈中要考慮采用消除間隙措施,以提高機器人的運動和位置控制精度。在機器人中常采用的機械傳動機構有齒輪傳動、蝸桿傳動、滾珠絲杠傳動、同步齒形帶傳動、鏈傳動、行星齒輪傳動、諧波齒輪傳動和鋼帶傳動等,由于齒輪傳動具有效率高,傳動比準確,結構緊湊、工作可靠、使用壽命長等優(yōu)點,且大學學習掌握的比較扎實,故本次設計選用齒輪傳動。
(四)工作范圍
工業(yè)機器人的工作范圍是根據(jù)工業(yè)機器人作業(yè)過程中操作范圍和運動軌跡來確定,用工作空間來表示的。工作空間的形狀和尺寸則影響機器人的機械結構坐標形式、自由度數(shù)和操作機各手臂關節(jié)軸線的長度和各關節(jié)軸轉角的大小及變動范圍的選擇
(五) 運動速度
機器人操作機手臂的各個動作的最大行程確定后,按照循環(huán)時間安排確定每個動作的時間,就能進一步確定各動作的運動速度,用m/s或(°)/s表示,各動作的時間分配要考慮多方面的因素,例如總的循環(huán)時間的長短,各動作之間順序是依序進行還是同時進行等。應試做各動作時間的分配方案表,進行比較,分配動作時間除考慮工藝動作的要求外,還應考慮慣性和行程的大小,驅動和控制方式、定位方式和精度等要求。
2.3 機器人機械傳動原理
本課題設計的是一種小經(jīng)濟型裝配機器人。該機器人為多關節(jié)型,具有六個自由度。采用伺服電機驅動,因此控制簡單,編程操作方便。機身采用薄壁整體鑄件,這樣可以使結構輕巧,使用靈活。內部鑄件既作為內部齒輪安裝殼體與軸的支撐座,又作為承力骨架,這樣不僅節(jié)省材料,減少加工量,又使整體減少質量[5]。
2.4 機器人總體方案設計
工業(yè)機器人的結構形式主要有直角坐標結構,圓柱坐標結構,球坐標結構,關節(jié)型結構四種。各結構形式及其相應的特點,分別介紹如下[3]。
(1) 直角坐標機器人結構
直角坐標機器人的空間運動是用三個相互垂直的直線運動來實現(xiàn)的,如圖2-1(a)由于直線運動易于實現(xiàn)全閉環(huán)的位置控制,所以,直角坐標機器人有可能達到很高的位置精度(μm級)。但是,這種直角坐標機器人的運動空間相對機器人的結構尺寸來講,是比較小的。因此,為了實現(xiàn)一定的運動空間,直角坐標機器人的結構尺寸要比其他類型的機器人的結構尺寸大得多。
直角坐標機器人的工作空間為一空間長方體。直角坐標機器人主要用于裝配作業(yè)及搬運作業(yè),直角坐標機器人有懸臂式,龍門式,天車式三種結構。
(2) 圓柱坐標機器人結構
圓柱坐標機器人的空間運動是用一個回轉運動及兩個直線運動來實現(xiàn)的,如圖2-1(b)。這種機器人構造比較簡單,精度還可以,常用于搬運作業(yè)。其工作空間是一個圓柱狀的空間。
(3) 球坐標機器人結構
球坐標機器人的空間運動是由兩個回轉運動和一個直線運動來實現(xiàn)的,如圖2-1(c)。這種機器人結構簡單、成本較低,但精度不很高。主要應用于搬運作業(yè)。其工作空間是一個類球形的空間。
(4) 關節(jié)型機器人結構
關節(jié)型機器人的空間運動是由三個回轉運動實現(xiàn)的,如圖2-1(d)。關節(jié)型機器人動作靈活,結構緊湊,占地面積小。相對機器人本體尺寸,其工作空間比較大。此種機器人在工業(yè)中應用十分廣泛,如焊接、噴漆、搬運、裝配等作業(yè),都廣泛采用這種類型的機器人。
關節(jié)型機器人結構,有水平關節(jié)型和垂直關節(jié)型兩種。
(a) 直角坐標型 (b) 圓柱坐標型 (c) 球坐標型 (d) 關節(jié)型
圖2-1 四種機器人坐標形式
根據(jù)任務書要求和具體實際我們選擇的是(d) 關節(jié)型。
具體到本設計,因為設計要求搬運的加工工件的質量達5KG,同時考慮到數(shù)控機床布局的具體形式及對機器人的具體要求,考慮在滿足系統(tǒng)工藝要求的前提下,盡量簡化結構,以減小成本、提高可靠度。該機器人手臂運動范圍大,且有較高的定位準確度,要求設計的機器人為六個自由度,其中腰部有一個旋轉自由度,大臂和小臂的俯仰自由度,小臂的旋轉自由度,手腕的俯仰、旋轉自由度。在本論文中,要求設計大小臂結構,所以,需要對實現(xiàn)大臂和小臂的俯仰自由度,小臂的旋轉自由度的機構進行詳細設計。
2.5 本章小結
本章主要完成對機器人整體方案的一個分析和設計,通過多種方案的選擇來確定最終要確定的方案. 確定了機器人的總體設計方案后,就要針對機器人的腰部、手臂、手腕、末端執(zhí)行器等各個部分進行詳細設計。
第3章 機器人各部分的設計
3.1 機器人腰座結構的設計
工業(yè)機器人腰座,就是圓柱坐標機器人,球坐標機器人及關節(jié)型機器人的回轉基座。它是機器人的第一個回轉關節(jié),機器人的運動部分全部安裝在腰座上,它承受了機器人的全部重量[4]。在設計機器人腰座結構時,要注意以下設計原則:
(1) 腰座要有足夠大的安裝基面,以保證機器人在工作時整體安裝的穩(wěn)定性。
(2) 腰座要承受機器人全部的重量和載荷,因此,機器人的基座和腰部軸及軸承的結構要有足夠大的強度和剛度,以保證其承載能力。
(3) 機器人的腰座是機器人的第一個回轉關節(jié),它對機器人末端的運動精度影響最大,因此,在設計時要特別注意腰部軸系及傳動鏈的精度與剛度的保證。
(4) 腰部的回轉運動要有相應的驅動裝置,它包括驅動器(電動、液壓及氣動)及減速器。驅動裝置一般都帶有速度與位置傳感器,以及制動器。
(5) 腰部結構要便于安裝、調整。腰部與機器人手臂的聯(lián)結要有可靠的定位基準面,以保證各關節(jié)的相互位置精度。要設有調整機構,用來調整腰部軸承間隙及減速器的傳動間隙。
(6) 為了減輕機器人運動部分的慣量,提高機器人的控制精度,一般腰部回轉運動部分的殼體是由比重較小的鋁合金材料制成,而不運動的基座是用鑄鐵或鑄鋼材料制成。
腰座回轉的驅動形式要么是電機通過減速機構來實現(xiàn),要么是通過擺動液壓缸或液壓馬達來實現(xiàn),目前的趨勢是用前者。因為電動方式控制的精度能夠很高,而且結構緊湊,不用設計另外的液壓系統(tǒng)及其輔助元件。考慮到腰座是機器人的第一個回轉關節(jié),對機器人的最終精度影響大,故采用電機驅動來實現(xiàn)腰部的回轉運動[5]。一般電機都不能直接驅動,考慮到轉速以及扭矩的具體要求,采用大傳動比的齒輪傳動系統(tǒng)進行減速和扭矩的放大。因為齒輪傳動存在著齒側間隙,影響傳動精度,故采用一級齒輪傳動,采用大的傳動比(大于100),同時為了減小機器人的整體結構,齒輪采用高強度、高硬度的材料,高精度加工制造,盡量減小因齒輪傳動造成的誤差。
3.2 機器人手臂的結構設計
機器人手臂的作用,是在一定的載荷和一定的速度下,實現(xiàn)在機器人所要求的工作空間內的運動[6]。在進行機器人手臂設計時,要遵循下述原則;
(1) 應盡可能使機器人手臂各關節(jié)軸相互平行;相互垂直的軸應盡可能相交于一點,這樣可以使機器人運動學正逆運算簡化,有利于機器人的控制。
(2) 機器人手臂的結構尺寸應滿足機器人工作空間的要求。工作空間的形狀和大小與機器人手臂的長度,手臂關節(jié)的轉動范圍有密切的關系。但機器人手臂末端工作空間并沒有考慮機器人手腕的空間姿態(tài)要求,如果對機器人手腕的姿態(tài)提出具體的要求,則其手臂末端可實現(xiàn)的空間要小于上述沒有考慮手腕姿態(tài)的工作空間。
(3) 為了提高機器人的運動速度與控制精度,應在保證機器人手臂有足夠強度和剛度的條件下,盡可能在結構上、材料上設法減輕手臂的重量。力求選用高強度的輕質材料,通常選用高強度鋁合金制造機器人手臂。目前,在國外,也在研究用碳纖維復合材料制造機器人手臂。碳纖維復合材料抗拉強度高,抗振性好,比重?。ㄆ浔戎叵喈斢阡摰?/4,相當于鋁合金的2/3),但是,其價格昂貴,且在性能穩(wěn)定性及制造復雜形狀工件的工藝上尚存在問題,故還未能在生產(chǎn)實際中推廣應用。目前比較有效的辦法是用有限元法進行機器人手臂結構的優(yōu)化設計。在保證所需強度與剛度的情況下,減輕機器人手臂的重量。
(4) 機器人各關節(jié)的軸承間隙要盡可能小,以減小機械間隙所造成的運動誤差。因此,各關節(jié)都應有工作可靠、便于調整的軸承間隙調整機構。
(5) 機器人的手臂相對其關節(jié)回轉軸應盡可能在重量上平衡,這對減小電機負載和提高機器人手臂運動的響應速度是非常有利的[7]。在設計機器人的手臂時,應盡可能利用在機器人上安裝的機電元器件與裝置的重量來減小機器人手臂的不平衡重量,必要時還要設計平衡機構來平衡手臂殘余的不平衡重量。
(6) 機器人手臂在結構上要考慮各關節(jié)的限位開關和具有一定緩沖能力的機械限位塊,以及驅動裝置,傳動機構及其它元件的安裝。
機器人的俯仰關節(jié)手臂(大臂)和俯仰關節(jié)手臂(大臂)。直線運動的實現(xiàn)一般是氣動傳動,液壓傳動以及電動機驅動滾珠絲杠來實現(xiàn)??紤]到搬運工件的重量較大,考慮加工工件的質量達0.55KG,屬小型重量,同時考慮到機器人的動態(tài)性能及運動的穩(wěn)定性,安全性,對手臂的剛度有較高的要求。不用再設計另外的執(zhí)行件了;而且液壓缸實現(xiàn)直線運動,控制簡單,易于實現(xiàn)計算機的控制。
因為液壓系統(tǒng)能提供很大的驅動力,因此在驅動力和結構的強度都是比較容易實現(xiàn)的,關鍵是機器人運動的穩(wěn)定性和剛度的滿足。因此手臂液壓缸的設計原則是缸的直徑取得大一點(在整體結構允許的情況下),再進行強度的較核。
同時,因為控制和具體工作的要求,機器人的手臂的結構不能太大,若僅僅通過增大液壓缸的缸徑來增大剛度,是不能滿足系統(tǒng)剛度要求的。因此,在設計時另外增設了導桿機構,小臂增設了兩個導桿,與活塞桿一起構成等邊三角形的截面形式,盡量增加其剛度;大臂增設了四個導桿,成正四邊形布置,為減小質量,各個導桿均采用空心結構。通過增設導桿,能顯著提高機器人的運動剛度和穩(wěn)定性,比較好的解決了結構、穩(wěn)定性的問題。
3.3機器人腕部的結構設計
機器人的手臂運動(包括腰座的回轉運動),給出了機器人末端執(zhí)行器在其工作空間中的運動位置,而安裝在機器人手臂末端的手腕,則給出了機器人末端執(zhí)行器在其工作空間中的運動姿態(tài)[8]。機器人手腕是機器人操作機的最末端,它與機器人手臂配合運動,實現(xiàn)安裝在手腕上的末端執(zhí)行器的空間運動軌跡與運動姿態(tài),完成所需要的作業(yè)動作。
(1) 機器人手腕的自由度數(shù),應根據(jù)作業(yè)需要來設計。機器人手腕自由度數(shù)目愈多,各關節(jié)的運動角度愈大,則機器人腕部的靈活性愈高,機器人對對作業(yè)的適應能力也愈強。但是,自由度的增加,也必然會使腕部結構更復雜,機器人的控制更困難,成本也會增加。因此,手腕的自由度數(shù),應根據(jù)實際作業(yè)要求來確定。在滿足作業(yè)要求的前提下,應使自由度數(shù)盡可能的少。一般的機器人手腕的自由度數(shù)為2至3個,有的需要更多的自由度,而有的機器人手腕不需要自由度,僅憑受臂和腰部的運動就能實現(xiàn)作業(yè)要求的任務。因此,要具體問題具體分析,考慮機器人的多種布局,運動方案,選擇滿足要求的最簡單的方案[9]。
(2) 機器人腕部安裝在機器人手臂的末端,在設計機器人手腕時,應力求減少其重量和體積,結構力求緊湊。為了減輕機器人腕部的重量,腕部機構的驅動器采用分離傳動。腕部驅動器一般安裝在手臂上,而不采用直接驅動,并選用高強度的鋁合金制造。
(3) 機器人手腕要與末端執(zhí)行器相聯(lián),因此,要有標準的聯(lián)接法蘭,結構上要便于裝卸末端執(zhí)行器。
(4) 機器人的手腕機構要有足夠的強度和剛度,以保證力與運動的傳遞。
(5) 要設有可靠的傳動間隙調整機構,以減小空回間隙,提高傳動精度。
(6) 手腕各關節(jié)軸轉動要有限位開關,并設置硬限位,以防止超限造成機械損壞。
3.4 機器人末端執(zhí)行器(手爪)的設計
機器人末端執(zhí)行器是安裝在機器人手腕上用來進行某種操作或作業(yè)的附加裝置。機器人末端執(zhí)行器的種類很多,以適應機器人的不同作業(yè)及操作要求[10]。末端執(zhí)行器可分為搬運用、加工用和測量用等。
搬運用末端執(zhí)行器是指各種夾持裝置,用來抓取或吸附被搬運的物體。
加工用末端執(zhí)行器是帶有噴槍、焊槍、砂輪、銑刀等加工工具的機器人附加裝置,用來進行相應的加工作業(yè)。
機器人夾持器及機器人手爪。一般工業(yè)機器人手爪,多為雙指手爪。按手指的運動方式,可分為回轉型和型,按夾持方式來分,有外夾式和內撐式兩種[12]。機器人夾持器
電動驅動手爪應用也較為廣泛。這種手爪,一般采用直流伺服電機或步進電機,并需要減速器以獲得足夠大的驅動力和力矩。電動驅動方式可實現(xiàn)手爪的力與位置控制。但是,這種驅動方式不能用于有防爆要求的條件下,因為電機有可能產(chǎn)生火花和發(fā)熱。
3.5 大小臂(關節(jié)2和關節(jié)3)電機的計算與型號選擇
在確定握力時,除考慮抓取物體重量0.5Kg外,還應考慮傳送或操作過程中所產(chǎn)生的慣性力和震動,以保證夾持安全可靠。另外,電動機根據(jù)運行距離及電機的脈沖當量算出脈沖數(shù),將數(shù)據(jù)輸入計算機,可以達到非常高的位姿準確度。綜上所述,本文選擇電機驅動為機械手的驅動方式。
本文設計要求夾持的物體重為 m=0.5Kg,設螺紋為 M8,其中徑 r=3.6mm,螺距 P=1mm,當量摩擦系數(shù) f=0.1,Q為軸向載荷,M為螺紋驅動力矩。手指材料為鋁合金,鋁合金與常用材料的磨擦系數(shù)如表3.1所示:
表3.1 主要工程材料摩擦系數(shù)
摩擦副材料
靜摩擦系數(shù)
鋁合金
黃 銅
0.27
青 銅
0.22
鋼
0.3
膠 木
0.34
鋼 紙
0.32
樹 脂
0.28
硬橡膠
0.25
石 板
0.26
從表3.1可以看出鋁合金與不同材料的靜摩擦系數(shù)趨近于0.3,所以取被抓物體和末端執(zhí)行器手指之間的靜摩擦系數(shù),則:
(3-1)
螺紋增力比
(3-2)
式中 ——當量摩擦角,= ;
——螺紋升角,=
帶入數(shù)據(jù),得, 得
(3-3)
選用齒輪傳動比 n=1:1,忽略齒輪傳動摩擦及軸承滾動摩擦力矩,根據(jù)上述計算,我們選擇了博美德(黃岡)機械有限公司公司生產(chǎn)的 SM40-001-30LFB 型伺服電機,它的保持轉矩為 100,滿足設計要求。
3.6 主要零件材料的選擇與強度校核
(1)殼體件材料的選擇
機械手臂的殼體可以全部選用硬鋁合金分段鑄造加工而成。本文選用的是ZAlSi9Mg,這是一種硬鋁材料,強度大、質量輕,完全符合本文的設計要求。
機械手指不是殼體機構,它是實體的。本文設計的手指材料也選用同樣的鋁合金。這有利于材料的購買,同樣這種材料是滿足設計要求的。材料ZAlSi9Mg的彎曲應力240,手指抓去的最大質量為3000g,重力為29.4N。對比兩者的力學性能和受力情況,很顯然此材料來制造手指遠遠滿足設計中的要求。,不會出現(xiàn)手指彎曲變形的情況。
(2)本體支撐件材料的選擇和校核
(a)材料的選擇
機械臂支撐件由于與連接件之間為滑動摩擦,需要選取一種耐摩擦,同時要求強度大,質量輕,價格便宜的材料來制造。
工程塑料擁有良好的綜合性能,其強度、剛度、沖擊韌性、抗疲勞等不較高,特別是擁有很高的耐磨性。它可以在無潤滑油的情況下有效的進行工作。由于它相對密度小,因此其強度高。
聚甲醛(POM)是一種比較常用的工程塑料。它是以線性結晶高聚甲醛樹脂為基礎的。它有著高強度、高彈性模量等優(yōu)良的綜合力學性能。其強度和金屬近似,摩擦因數(shù)小并有自潤滑性,因而耐磨性好。聚甲醛材料是一種相當便宜的材料。
由于本設計中的負荷低,機構的速度不快,從而此處選擇有聚甲醛這種工程塑料來制造手部的導向軸。
(b)支撐件的校核
支撐件是用來支撐機器人主要機械機構的,本文中共用兩個支撐件,直徑各為8mm,手部的兩個導向軸受力幾乎一樣。手部要抓取的物體重量為3Kg。這樣每個導向軸受到的重量有3Kg。受到的重力僅為29.4N。聚甲醛分為均聚和共聚兩種,使用時應注意它們性能上的區(qū)別。共聚甲醛在短期內強度好而均聚甲醛柔軟性好。共聚物比均聚物軟化點高10℃,受載荷時熱變形溫度高,熱穩(wěn)定性好,成型溫度范圍廣。聚甲醛成型材料的一般性質如表3.3所示:
表3.3 聚甲醛成型材料的一般性質(23℃)
?
項目
單位
試驗方法ASTM
一般型號
CF增強型號
均聚物
共聚物
均聚物
共聚物
物理機械性能
比重
吸水率(24h浸漬)
吸水率*
抗張強度
相對伸長
拉伸模量
抗彎強度
彎曲模量
壓縮強度(10%)
剪切強度
懸臂梁(缺口)
沖擊強度(無缺口)
洛氏硬度
錐度摩擦
摩擦系數(shù)(對鋼)
摩擦系數(shù)[同材料]
-
%
%
MPa
%
GPa
MPa
GPa
MPa
MPa
J/cm
J/cm
-
Mg/千周
-
-
-
D570
D570
D638
D638
D638
D790
D790
D695
D732
D256
D256
D785
D1044
D1894
-
1.42
0.25
0.22
68.6
40
3.1
97.1
2.82
124.5
65.7
0.745
1.284
M94
-
-
-
1.41
0.22
0.16
60.8
60
2.82
96.1
2.59
107.9
53.0
0.637
11.17
M80
14
0.15
0.35
1.56
0.25
0.20
58.8
12
6.21
73.5
5.03
124.5
65.7
0.431
-
M90
-
-
-
1.61
0.29
-
127.5
3
8.63
193.2
7.55
117.7
66.7
0.843
4.31
M79
40
0.15
0.35
表注: 1. 吸水率*(23℃,50%RH平衡)
聚甲醛的抗壓強度為124.5,抗彎強度為97.1,整個零件的強度和剛度是非常大的。從每個件的受力來看,材料聚甲醛的各個力學性能完全滿足本文的設計要求。由于聚甲醛的耐摩擦性好,而機器人速度慢,從摩擦的角度來說,聚甲醛也是理想的支撐件材料。聚甲醛與其他塑料相比,具有自潤滑性及低摩擦系數(shù)、低磨耗等特點。其動摩擦系數(shù)和靜摩擦系數(shù)相近,粘接較困難。有報導與鋼進行摩擦試驗結果如表3.4所示:
表3.4 與硬鋁進行摩擦實驗結果
動摩擦系數(shù)
0.21 1
(P1:0.27MPa)
(v1:25cm/s)
比因耗
1.32mm3/(N.m)
臨界Pv值
122kPa. m/s
?
3.7 臂部肘關節(jié)直齒圓錐齒輪傳動的設計
一對直齒圓錐齒輪傳動如圖3.6所示:
圖3.6 一對直齒圓錐齒輪傳動
參數(shù)選擇時應注意,直齒圓錐齒輪最小齒數(shù)為,齒數(shù)比不宜過大。齒寬系數(shù)不應過大,因為圓錐齒輪的齒越寬,制造、安裝誤差就越大,偏載也越嚴重,故一般取,還應使最小齒寬
(1) 選定齒輪材料,熱處理方式 ,齒數(shù)及精度等級
對于一般齒輪傳動,可選用優(yōu)質碳素鋼。
A齒輪:45號鋼,調質HB240~270(T255);
B齒輪:45號鋼,正火HB180~210(Z195);
兩輪均為軟齒面(HB<350)。為避免根切及具有較好性能,考慮到直齒圓錐齒輪最小齒數(shù),選定齒輪齒數(shù)。。
按一般的加工能力及 使用要求,初選齒輪精度等級為8級。
(2) 初步確定主要參數(shù)
由于兩齒輪齒面均為軟齒面(HB<350),可以先按齒面接觸疲勞強度進行設計,確定A齒輪的分度圓直徑,即
(mm) (3-1)
式中:工作轉矩
-工作情況系數(shù) ,由表4-9,電動機驅動,工作平穩(wěn),?。?;
-載荷分布不均系數(shù),見表5-2,一般工業(yè),一齒輪為懸臂支承,?。?.2;
-齒寬系數(shù),由表5-3取=0.3;
-齒數(shù)比,;
-齒輪材料接觸疲勞的基本許用應力,由圖3-13(a),碳鋼,鋼質,調質,??;正火,。
將以上系數(shù)和中的小值代入公式得
(3-2)
大端模數(shù) (3-3)
按照表4-7齒輪標準模數(shù),選取第一系列模數(shù)值。
然后,再根據(jù)齒根彎曲疲勞強度進行驗算。
(3-4)
(3-5)
式中: (3-6)
(3-7)
-動載荷系數(shù),用平均直徑處的圓周速度按降一級精度(即9級)并由圖4-20(a)查取,其中
(3-8)
(3-9)
(3-10)
由圖4-20(a)查得=1;
(3-11)
(3-12)
-齒形系數(shù),查圖4-27得;
-齒寬,,圓整后??;
-齒輪材料彎曲疲勞的基本許用應力,可查圖4-12(c)得:,;
(3-13)
查圖4-30得
查圖4-31得
查圖4-32得 ,
(3-14)
由于,故計算小輪齒根彎曲疲勞強度
表明取是合格的。
(3) 計算圓錐齒輪的有關參數(shù)
工作轉矩:
圓錐齒輪大端分度圓直徑:
圓錐齒輪的分錐角,:()
圓錐齒輪錐距:
(3-15)
齒寬系數(shù):
(3-16)
(4) 計算齒輪嚙合處作用力:
圓周力 (3-17)
軸向力 (3-18)
徑向力 (3-19)
當時,一齒輪的徑向力與另一齒輪的軸向力數(shù)值相等而方向相反。即 ,。圓錐齒輪作用力方向如圖3.7所示:
圖3.7 圓錐齒輪作用力方向
電動機置于小臂殼體內。其中方形截面為機械手大臂與小臂的殼體,截面為小臂機構的殼體。機械手手臂剛性好、抗扭能力強、重量輕,所有傳動機構和驅動裝置都置于機械手臂內部,外形簡潔。
3.8 臂部電機的計算與選型
對于本課題來說,關節(jié)額定轉速為20r/min。
如果用直流電機,由于受轉速和力矩的影響,要配減速器。
而如果用步進電機,控制位置精度比較高可以達到 1.8 度。而且不需要減速器避免造成結構冗繁。因此選擇步進電機作為驅動電機。
步進電機作為一種新型的自動控制系統(tǒng)的執(zhí)行機構,得到了越來越廣泛的應用,進入了一些高、精、尖的控制領域。步進電機雖然有一些不足,如啟動頻率過高或負載過大時易出現(xiàn)丟步或堵轉,停止時轉速過高易出現(xiàn)過沖,且一般無過載能力,往往需要選取有較大轉距的電機來克服慣性力矩。但步進電機點位控制性能好,沒有積累誤差,易于實現(xiàn)控制,能夠在負載力矩適當?shù)那闆r下,以較小的成本與復雜度實現(xiàn)電機的同步控制。
下面對步進電機型號進行選擇,輪式移動機器人在移動的時候,需要克服兩種阻力:摩擦力和重力。估算機器人整體重量在 20Kg(重物0.5kg加上機器人重量)左右,摩擦系數(shù)按金屬之間的取為 0.5,則機器人需要的總功率為:
則提供的功率為49瓦。:
(3-1)
則電機需要提供的轉矩為:
(3-2)
因此,選擇了北京和利時公司的 57BYG250E-0152 型號電機。靜轉矩為 1.5 NM 。該電機在相近產(chǎn)品中具有在轉速變高一定范圍內能夠保持平穩(wěn)的力矩。其力矩隨轉速的關系如下圖4.8所示。
3.9本章小結
本章介紹手部結構設計要求及傳動方式的選擇的比較,手指的設計方案的比較,電機的計算與型號選擇。機器人機械臂各零部件所要求的強度、剛度等都不同,應該選用不同的材料來制造加工。所以本章就依據(jù)機器人在工作過程中各零部件不同受力情況,以及機械設計的要求選用了不同的材料來制造零件,并對零件進行了強度校核,使其達到工作要求。
圖3.8 電機轉矩圖
下面是所選電機的外形尺寸。
第4章 控制部分設計
系統(tǒng)方案方框圖如圖所示。
檢測軌跡
驅動電機
軟件控制
控制機器人小車
8051單片機是把那些作為控制應用所必需的基本內容都集成在一個尺寸有限的集成電路芯片上。如果按功能劃分,它由如下功能部件組成,即微處理器、數(shù)據(jù)存儲器、程序存儲器、并行I/O口、串行口、定時器/計數(shù)器、中斷系統(tǒng)及特殊功能寄存器。它們都是通過片內單一總線連接而成,其基本結構依舊是CPU加上外圍芯片的傳統(tǒng)結構模式。但對各種功能部件的控制是采用特殊功能寄存器的集中控制方式。
1 、微處理器
該單片機中有一個8位的微處理器,與通用的微處理器基本相同,同樣包括了運算器和控制器兩大部分,只是增加了面向控制的處理功能,不僅可處理數(shù)據(jù),還可以進行位變量的處理。
2 、數(shù)據(jù)存儲器
片內為128個字節(jié),片外最多可外擴至64k字節(jié),用來存儲程序在運行期間的工作變量、運算的中間結果、數(shù)據(jù)暫存和緩沖、標志位等,所以稱為數(shù)據(jù)存儲器。
3 、程序存儲器
由于受集成度限制,片內只讀存儲器一般容量較小,如果片內的只讀存儲器的容量不夠,則需用擴展片外的只讀存儲器,片外最多可外擴至64k字節(jié)。
4 、 中斷系統(tǒng)
具有5個中斷源,2級中斷優(yōu)先權。
5 、 定時器/計數(shù)器
片內有2個16位的定時器/計數(shù)器, 具有四種工作方式。
6 、 串行口
1個全雙工的串行口,具有四種工作方式??捎脕磉M行串行通訊,擴展并行I/O口,甚至與多個單片機相連構成多機系統(tǒng),從而使單片機的功能更強且應用更廣。
7 、 P1口、P2口、P3口、P4口
為4個并行8位I/O口。
8 、特殊功能寄存器
共有21個,用于對片內的個功能的部件進行管理、控制、監(jiān)視。實際上是一些控制寄存器和狀態(tài)寄存器,是一個具有特殊功能的RAM區(qū)。
由上可見,單片機的硬件結構具有功能部件種類全,功能強等特點。特別值得一提的是該單片機CPU中的位處理器,它實際上是一個完整的1位微計算機,這個一位微計算機有自己的CPU、位寄存器、I/O口和指令集。1位機在開關決策、邏輯電路仿真、過程控制方面非常有效;而8位機在數(shù)據(jù)采集,運算處理方面有明顯的長處。MCS-51單片機中8位機和1位機的硬件資源復合在一起,二者相輔相承,它是單片機技術上的一個突破,這也是MCS-51單片機在設計的精美之處。
機器人操作臂是三維開環(huán)鏈式機構,具有多個自由度,需要對每個關節(jié)變量設定植,因為選用的動力源為伺服電機,容易與CPU連接,故選用單片機,MCS-51系列的8051.因8051的P0.0-P0.7為分時復用的端口,可傳輸數(shù)據(jù)信號也可傳輸?shù)刂沸盘?需選用地址鎖存器74LS373,為控制電機的正反轉時間以保證關節(jié)變量的要求,用定時器8053控制電機驅動芯片的使能端,電機驅動芯片選用L293D.
在大臂 小臂和手爪部件上分別安裝紅外感應器,當大臂、小臂和手爪任何和部位與周圍環(huán)境發(fā)生碰撞時,紅外感應器向CPU發(fā)出中斷請求,使系統(tǒng)停止運行,同時有手動開關,在特殊情況下,人為向CPU發(fā)出中斷請求.
總結與展望
總結本文對機器人的機械臂結構系統(tǒng)進行了設計,包括一個4個自由度機械臂,機械臂的設計包括肩部,臂部及手部的結構設計。并對機械臂進行了性能分析。
機械臂,繞水平軸旋轉的自由度肩部使用了蝸輪蝸桿副臂部使用了圓錐齒輪傳動,手部使用了直齒圓柱齒輪及左右螺旋的形式傳動。由于作者的水平有限,而且對有些相關學科,如傳感器技術、控制技術等并不是很了解,仍有許多問題需要解決,還有許多問題值得進一步討論和更加深入的研究與展望:
(1)機械結構優(yōu)化問題
在機器人設計過程中,包括機械臂,采用模塊化設計,不同功能結構分別進行設計,各模塊之間連接采用最優(yōu)方式。但是在模塊各零件設計過程中,各參數(shù)計算選擇主要從結構強度和剛度要求出發(fā),很多零件為了匹配,比實際需求尺寸大很多。包括一些非關鍵零件設計,均是根據(jù)前人經(jīng)驗設計,選擇尺寸。這種設計不僅增加了整個系統(tǒng)質量,同時增加了電機負載,造成了資源浪費。
臂部的關節(jié)應該放在大臂上,不應該放在小臂上,增加了小臂的重量,增大了小臂的傳動力矩,以及增加了臂部傳動負荷。
(2)計算機的有限元的分析沒有做。通過對計算機有限元軟件的更深層次挖掘,對零件的強度和剛度和臂部的力學分析,會得到最優(yōu)的結構。這個以后可以作為后續(xù)學習的方向。
(3) 機械臂自主控制系統(tǒng)的建立有待于進一步研究,以及它的運動控制技術,路徑規(guī)劃技術,實時視覺技術,定位和導航技術,多傳感