齒輪齒條轉向器的設計【說明書+CAD+UG】
齒輪齒條轉向器的設計【說明書+CAD+UG】,說明書+CAD+UG,齒輪齒條轉向器的設計【說明書+CAD+UG】,齒輪,齒條,轉向器,設計,說明書,仿單,cad,ug
目錄
目錄 1
摘要 3
Abstract 4
第1章 緒論 5
1.1 齒輪齒條轉向器研究現狀 5
1.1.1 轎車轉向系統(tǒng)的發(fā)展概況 9
1.2 研究目的與意義 10
1.3 轎車轉向系統(tǒng)的要求 10
1.4 齒輪齒條轉向設計任務要求 11
第2章 設計任務及方案擬定 12
2.1 設計任務要求 12
2.2 設計任務要求 14
2.3 方案擬定 14
2.3.1 齒輪齒條轉向器的優(yōu)缺點 14
2.3.2 齒輪齒條轉向器的輸入形式及特點 15
2.4 各種形式轉向器現狀對比 16
2.4.1 轉向器的功用和類型 16
2.4.2 轉向器結構 17
第3章 轉向梯形設計與計算 21
3.1 設計轉向梯形時應滿足要求 21
3.2 轉向梯形結構方案分析 21
3.2.1 轉向梯形計算 21
第4章 轉向器的設計與校核 23
4.1 轉向系計算載荷的確定 23
4.1.1 原地轉向阻力矩 23
4.1.2 轉向盤手力 23
4.2 齒輪齒條設計 24
4.3 齒條的強度計算 25
4.3.1 齒條的受力分析 25
4.3.2 齒條桿部受拉壓的強度計算 26
4.3.3 齒條齒部彎曲強度的計算 26
4.4 小齒輪的強度計算 27
4.4.1 齒面接觸疲勞強度計算 27
4.4.2 齒輪齒跟彎曲疲勞強度計算 30
第5章 車輛轉向力液壓回路分析 32
5.1 液壓回路 32
5.2 總體布局 36
參考文獻 40
摘要
在現代汽車上,轉向系統(tǒng)是必不可少的最基本的系統(tǒng)之一,也是決定汽車主動安全性的關鍵總成,汽車的轉向特性,保持汽車具備較好的操縱性能,始終是汽車檢測技術當中的一個重要課題。特別是在車輛高速化、駕駛人員非職業(yè)化、車流密集化的今天,汽車轉向系的設計工作顯得尤為重要。
本文的主題是轉向系統(tǒng)的設計。著眼于齒輪齒條式轉向器的設計,首先是對車輛轉向系統(tǒng)的總體描述;第二個是機械轉向器的選擇;三是齒輪與齒條的合理匹配,以滿足轉向器正確的傳動比和強度要求;它是動力轉向機構的設計;第五個是梯形結構設計。因此,考慮到上述要求和因素,研究了由方向盤的旋轉驅動的傳動機構的齒條齒輪轉向軸的轉向,由萬向接頭驅動的轉向齒輪軸的轉動,以及轉向齒輪軸與轉向齒條的嚙合,從而促使轉向齒條線性移動以實現轉向。能夠實現轉向器的簡單緊湊的結構,短的軸向尺寸和少量的部件的優(yōu)點,并且可以增加輔助力,從而實現車輛的轉向的穩(wěn)定性和靈敏度。本文主要對轉向器齒條的設計和轉向器軸的標定進行了研究。主要方法和理論是根據汽車設計的經驗參數和大學所學機械設計的課程內容設計的。結果符合強度要求。安全可靠。
關鍵詞:汽車,轉向器,齒輪齒條,助力器,液壓傳動
Abstract
In modern automobiles, the steering system is one of the most basic systems that are indispensable, and it is also a key component that determines the active safety of the car. The steering characteristics of the car and maintaining the car's good maneuverability are always among the automotive inspection technologies. One of the important topics. Especially in today's high-speed vehicles, unprofessional drivers, and dense traffic, the design of automotive steering systems is particularly important.
The theme of this article is the design of the steering system. Focusing on the design of the rack-and-pinion steering gear, the first is the overall description of the steering system of the vehicle; the second is the choice of the mechanical steering gear; and the third is the reasonable matching of the gear and the rack to meet the correct gear ratio of the steering gear and The strength requirements; it is the design of the power steering mechanism; the fifth is the trapezoidal structure design. Therefore, considering the above requirements and factors, the steering of the rack gear steering shaft of the transmission driven by the rotation of the steering wheel, the rotation of the steering gear shaft driven by the universal joint, and the engagement of the steering gear shaft with the steering rack are studied. This causes the steering rack to move linearly to achieve steering. The simple and compact structure of the steering gear, the short axial dimension and the advantages of a small number of parts can be achieved, and the assisting force can be increased, so that the steering stability and the sensitivity of the vehicle can be achieved. This paper mainly studies the design of the steering gear rack and the calibration of the steering gear shaft. The main methods and theories are based on the empirical parameters of the car design and the course content of the mechanical design of the university. The results meet the strength requirements. Safe and reliable.
Key words: car; steering system; rack and pinion design; steering trapezoid
第1章 緒論
1.1 齒輪齒條轉向器研究現狀
從世界第一輛汽車問世至今,汽車工業(yè)已經經歷了百年歷程?,F代的汽車與發(fā)展初期相比,廣泛地應用了各種高新技術,并且還在發(fā)生更深刻的變革。轉向系統(tǒng)作為汽車底盤中的獨立分系統(tǒng) ,在汽車技術發(fā)展的過程中也經歷了深刻的變革。轉向技術的發(fā)展基本上經歷了機械轉向、液壓(氣壓)動力轉向、電子控制液壓動力轉向、電動轉向、電子線控轉向和主動轉向幾個階段。?
汽車轉向系是保持或者改變汽車行駛方向的機構,在汽車轉向行駛中,保證各轉向輪之間有協(xié)調的轉角關系。保證汽車在行駛中能按駕駛員的操縱要求,適時地改變行駛方向,并能在受到路面干擾偏離行駛方向時,與行駛系配合,共同保持汽車穩(wěn)定地直線行駛。轉向系對汽車行駛的操縱性、穩(wěn)定性和安全性都具有重要的意義。
改革開放以來,我國汽車工業(yè)發(fā)展迅猛。作為汽車關鍵部件之一的轉向系統(tǒng)也得到了相應的發(fā)展,基本已形成了專業(yè)化、系列化生產的局面。有資料顯示,國外有很多國家的轉向器廠,都已發(fā)展成大規(guī)模的生產的專業(yè)廠,年產超夠百萬臺,壟斷了轉向器的生產,并且銷售點遍布了全世界。從操縱輕便性、穩(wěn)定性及安全性行駛的角度,汽車制造廣泛使用更先進的工藝方法,使用變速比轉向器、高剛性轉向器?!白兯俦群透邉傂浴笔悄壳笆澜缟仙a的轉向器結構的方向
幾十年來,各種汽車都使用循環(huán)球式轉向器。由于這種轉向器是滾動摩擦形式,因而正傳動效率很高,操作方便且使用壽命長,而且承載能力大,廣泛應用于載貨車上。
隨著上世紀五十年代起,液壓動力轉向系統(tǒng)在汽車上的應用,標志著轉向系統(tǒng)革命的開始。汽車轉向動力的來源由以前的人力轉變人力加液壓助力。液壓助力系統(tǒng)HPS是機械式轉向系統(tǒng)的基本上增加了一個液壓系統(tǒng)而成。由于工作可靠、技術成熟至今仍被廣泛應用。
從70年代起轎車興起了齒輪齒條轉向器,這種轉向機構由方向盤、轉向軸、萬向節(jié)、轉動軸、轉向器、轉向傳動桿和轉向輪等組成。方向盤操縱轉向器內的齒輪傳動,齒輪與齒條緊密嚙合,推動齒條左移動或右移動,帶動轉向輪擺動,從而改變轎車行駛的方向。這種轉向機構與循環(huán)球式等其它類型的轉向機構比較,省略了轉向搖臂和轉向主拉桿,具有構件簡單,傳動效率高的優(yōu)點。而且它的逆?zhèn)鲃有室哺撸谲囕v行駛時可以保證偏轉車輪的自動回正,駕駛者的路感性強。
近年來,隨著電子技術在汽車中的廣泛應用,轉向系統(tǒng)中也越來越多地采用電子器件。但目前電子轉向系統(tǒng)由于自身成本等因素的制約,很難在價格低廉的家用轎車上得到普及,而且電子轉向系統(tǒng)的安全可靠性相對較差,目前歐洲汽車法規(guī)中要求駕駛員與轉向車輪之間必須有機械連接,電子轉向系還不允許在歐洲上市。
齒輪齒條轉向器:它是一種最常見的轉向器。其基本結構是一對相互嚙合的小齒輪和齒條。轉向軸帶動小齒輪旋轉時,齒條便做直線運動。有時,靠齒條來直接帶動橫拉桿,就可使轉向輪轉向。所以,這是一種最簡單的轉向器。它的優(yōu)點是結構簡單,成本低廉,轉向靈敏,體積小,可以直接帶動橫拉桿。在汽車上得到廣泛應用。
齒輪齒條式轉向器分兩端輸出式和中間(或單端)輸出式兩種。兩端輸出的齒輪齒條式轉向器,作為傳動副主動件的轉向齒輪軸通過軸承安裝在轉向器殼體中,其上端通過花鍵與萬向節(jié)叉和轉向軸連接。與轉向齒輪嚙合的轉向齒條水平布置,兩端通過球頭座與轉向橫拉桿相連。彈簧通過壓塊將齒條壓靠在齒輪上,保證無間隙嚙合。彈簧的預緊力可用調整螺塞調整。當轉動轉向盤時,轉向器齒輪轉動,使與之嚙合的齒條沿軸向移動,從而使左右橫拉桿帶動轉向節(jié)左右轉動,使轉向車輪偏轉,從而實現汽車轉向。中間輸出的齒輪齒條式轉向器,其結構及工作原理與兩端輸出的齒輪齒條式轉向器基本相同,不同之處在于它在轉向齒條的中部用螺栓與左右轉向橫拉桿相連。在單端輸出的齒輪齒條式轉向器上,齒條的一端通過內外托架與轉向橫拉桿相連。
2007年中國汽車銷售879.15萬輛,2008年中國汽車銷售938萬輛,2009年預計增長8.6%,達到1019萬輛。汽車產銷量的逐步增長為汽車轉向機市場提供了一個較大的發(fā)展空間,2008年市場對轉向機行業(yè)需求有所減緩,在需求增長有所減緩的現狀下,產能擴張的勢頭并沒有得到較好的控制。產能過剩、重復建設不僅導致生產與消費的失衡,而且還引發(fā)了轉向機行業(yè)內的一系列惡性價格競爭,影響了轉向機行業(yè)業(yè)的盈利能力。中國轉向機行業(yè)市場現狀,為外資企業(yè)入駐中國創(chuàng)造了條件,國際許多轉向機行業(yè)企業(yè)已經看中在中國低成本拓展市場的機會,隨著外資投入逐步加大,中國國內企業(yè)改革重組迅速加快。同時新的行業(yè)制度等政策的頒布和實施將促使我國轉向機行業(yè)洗牌,企業(yè)兼并重組將在政策的促使下大力發(fā)展。
據了解,在世界范圍內,汽車循環(huán)球式轉換器占45%左右,齒輪齒條式轉換器占40%左右,渦桿滾輪式轉換器占10%左右,其他型式的轉換器占5%。循環(huán)球式轉換器一直在穩(wěn)步發(fā)展。在西歐小客車中,齒輪齒條式轉換器有很大的發(fā)展。日本汽車轉向器的特點是循環(huán)球式轉換器占得比重越來越大,日本裝備不同類型發(fā)動機的類型汽車,采用不同類型轉向器,在公共汽車中使用的循環(huán)球式轉換器,已由60年代的62.5%,發(fā)展到現今的100%了,大、小型貨車大都循環(huán)球式轉換器,但齒輪齒條式轉換器也有所發(fā)展。微型貨車用循環(huán)球式轉換器占65%,齒輪齒條式占35%。
齒輪齒條式轉換器和循環(huán)球式轉換器,已成為當今世界汽車上主要的兩種轉向器:而渦輪蝸桿式轉向器和蝸桿肖式轉向器,正在逐步被淘汰或保留較小的地位。齒輪齒條式轉向器的主要優(yōu)點:結構簡單、緊湊;殼體采用鋁合金或鎂合金壓鑄而成,轉向器的質量比較小;傳動效率高達90%;齒輪與齒條之間因磨損出現間隙后,利用裝在齒條背部、靠近主動小齒輪處的壓緊力可以調節(jié)的彈簧,能自動消除間隙,這不僅可以提高轉向系統(tǒng)的剛度,還可以防止工作時產生沖擊和噪聲;轉向器占用體積?。恢圃斐杀镜?。
在轉向技術方面,汽車和普通汽車,由于汽車的體積小,重量輕,在安裝空間和轉向特性方面與大型汽車有一些差異,但汽車的轉向系統(tǒng)和普通汽車 轉向原理,轉向要求和轉向效果基本相同。
轉向系統(tǒng)用于保持或改變汽車的方向。轉向系統(tǒng)應該準確快速地響應駕駛員的轉向指示。當轉向正在進行或受到外部干擾時,駕駛員應釋放方向盤。確保汽車自動恢復到穩(wěn)定的直線運動狀態(tài)。
汽車工業(yè)是國民經濟的支柱產業(yè),代表了一個國家的綜合國力。隨著機械和電子技術的發(fā)展,汽車工業(yè)不斷發(fā)展。今天,這輛車不僅僅是一輛機械車。它是力學,電子學和材料學科的綜合產品。隨著汽車工業(yè)的發(fā)展,汽車轉向系統(tǒng)也經歷了長期的演變。
傳統(tǒng)的汽車轉向系統(tǒng)是一種機械轉向系統(tǒng)。汽車的轉向由駕駛員的方向盤控制,車輪通過一系列機械轉向組件(如轉向機構)轉向,以實現轉向。
自20世紀50年代以來,隨著液壓動力轉向系統(tǒng)在汽車中的應用,標志著轉向系統(tǒng)革命的開始。汽車轉向功率的來源已經從之前的人力轉向人力和液壓。液壓動力轉向系統(tǒng)(HPS)是添加到機械轉向系統(tǒng)的液壓系統(tǒng)。液壓系統(tǒng)通常連接到發(fā)動機。發(fā)動機啟動時,發(fā)動機的一部分能量為汽車前進提供動能,另一部分為液壓系統(tǒng)提供動力。由于其可靠的工作和成熟的技術,現在它仍然被廣泛使用。這種動力轉向系統(tǒng)的主要特點是液壓支持轉向運動,減少了駕駛員對方向盤的壓力,提高了轉向的方便性和汽車的穩(wěn)定性。
近年來,隨著電子技術在汽車中的廣泛應用,電子設備越來越多地用于轉向系統(tǒng)。結果,轉向系統(tǒng)進入了電子控制時代,相應地出現了電動液壓動力轉向系統(tǒng)。電動液壓動力轉向可分為兩類:電動液壓動力轉向(EHPS)和電子控制液壓動力轉向(ECHPS)。電動液壓助力轉向系統(tǒng)是在液壓助力系統(tǒng)的基礎上發(fā)展起來的。與液壓動力輔助系統(tǒng)不同,電動液壓動力輔助系統(tǒng)中液壓系統(tǒng)的動力源不是發(fā)動機,而是電動機。電機驅動液壓系統(tǒng),從而節(jié)省發(fā)動機能量。 ,降低油耗。電子控制液壓助力轉向系統(tǒng)也是在傳統(tǒng)液壓助力系統(tǒng)的基礎上發(fā)展起來的。不同之處在于電控液壓動力轉向系統(tǒng)增加了電子控制裝置。電子控制裝置可以根據方向盤轉向速度,車速等車輛運行參數改變液壓系統(tǒng)的液壓,實現不同車速下輔助特性的變化。由電機驅動的液壓系統(tǒng)可以在沒有轉向操作時停止電機,從而降低能耗。
盡管電動液壓動力轉向系統(tǒng)克服了液壓動力轉向的一些缺點。然而,由于液壓系統(tǒng)的存在,液壓油泄漏也存在同樣的問題,電動液壓助力轉向系統(tǒng)引入驅動電機,使系統(tǒng)更加復雜,成本增加,可靠性降低。
為了規(guī)避電動液壓動力轉向系統(tǒng)的缺點,EPS(電動助力轉向)已經出現。與上述各種動力轉向系統(tǒng)最大的區(qū)別在于電動助力轉向系統(tǒng)中沒有液壓系統(tǒng)。最初由液壓系統(tǒng)產生的轉向助力由電動機完成。電動轉向系統(tǒng)通常由轉矩傳感器,微處理器,電動機等組成。其基本工作原理是:當駕駛員轉動方向盤驅動轉向軸轉動時,安裝在轉軸上的轉矩傳感器將轉矩信號轉換成電信號并傳送給微處理器。微處理器結合扭矩信號其他車輛操作參數(如車輛速度)基于程序中預先設定的處理方法,以確定助力器電機輔助的方向和輔助的大小。
轉向系統(tǒng)的結構簡介
轉向系統(tǒng)是車輛底盤的重要組成部分。轉向系統(tǒng)的性能直接影響車輛的安全性,穩(wěn)定性和駕駛舒適性。它確保了車輛的安全性,減少了交通事故并保護了駕駛者的身體。安全和改善駕駛員的工作條件起著重要作用。
根據轉向力能源,轉向系統(tǒng)可分為機械轉向系統(tǒng)和動力轉向系統(tǒng)。
機械轉向系統(tǒng)的能量源是人力,依靠駕駛員的手力轉動方向盤,所有力傳遞部件都是機械的,由轉向轉向機構(方向盤),轉向機構,轉向傳動機構組成,通過操舵裝置和轉向裝置使方向盤偏轉。其中,操舵裝置是將操作機構的旋轉運動變換為傳動機構的直線運動(嚴格地說是近似直線運動)并且是轉向系統(tǒng)的核心部件的機構。
除上述三個主要組件外,動力轉向系統(tǒng)的主要動力源是轉向輔助裝置。由于轉向輔助裝置通常是液壓系統(tǒng),它也與泵,管道,閥門,活塞和儲油罐密不可分。它們相當于電路系統(tǒng)中的電池,電線,開關,電機和接地線的影響。?
1.1.1 轎車轉向系統(tǒng)的發(fā)展概況
??早期的汽車轉向是用舵柄或橫桿(兩端帶柄的水平桿)進行的。轉向比為1:1,并且該車的操作非常費力。后來,齒輪傳動比的轉向裝置被迅速推廣。然而,這種機構的方向盤并未像舵柄或橫桿那樣放在汽車的中心線上,而是放在汽車的左側,或者在右側,這引發(fā)了對轉向位置的爭論輪。這一爭論持續(xù)了很長一段時間,導致今天的汽車分為方向盤裝置法兩大類:一種左側方向盤用于美國,中國,俄羅斯等世界各國和地區(qū),自上而下實施汽車規(guī)則;英國,英聯邦,日本等少數國家和地區(qū)采用的一種右轉方向盤實施右下和左上駕駛汽車的規(guī)則。
轉向器是轉向系統(tǒng)的關鍵部件。隨著電子技術在汽車中的廣泛應用,轉向裝置的結構也發(fā)生了很大的變化。從當前使用的普遍程度來看,主要有四種類型的轉向器:蝸桿式(WP型),蝸輪式(WR型),循環(huán)球式(BS型),齒輪齒條式(RP型)。這四種轉向器類型已經在汽車中廣泛使用。
據了解,在全球范圍內,汽車循環(huán)球式轉向器約占45%,齒輪齒條式轉向器占約40%,蝸輪式轉向器約占10%,其他類型的轉向器占為5%。循環(huán)球式轉向器一直在穩(wěn)步發(fā)展。在西歐的小型貨車中,齒條齒輪式轉向器已得到很大發(fā)展。
日本的汽車轉向器的特點是循環(huán)球式轉向器的比例越來越大。日本各種配備不同類型發(fā)動機的發(fā)動機使用不同類型的轉向器,并開發(fā)了公共汽車中使用的循環(huán)球式轉向器。 20世紀60年代的62.5%現在已經增長到100%(在公交車上已經消除了蝸輪轉向器)。大多數大型和小型卡車都使用循環(huán)球式轉向器,但齒輪齒條式轉向器也已開發(fā)。小型貨車的循環(huán)球式轉向器占65%,齒輪齒條式占35%。
中國的轉向器生產,除了早期生產解放牌汽車蝸輪轉向器,東風汽車蝸桿式小型轉向器外,其余大部分型號均采用循環(huán)球結構,并均具有一定的生產經驗。目前,解放和東風也在積極開發(fā)循環(huán)球式轉向器,在二代轉換車上一般采用循環(huán)球式轉向器。從中可以看出,中國的轉向器也朝著大量生產循環(huán)球式轉向器發(fā)展。
齒條齒輪轉向器和循環(huán)球轉向器已成為當今世界的兩大轉向器。蝸桿齒輪蝸桿和蝸桿齒輪轉向器逐漸被淘汰或保持在相對較小的位置。小型乘用車轉向器的發(fā)展有不同的看法。美國和日本都專注于循環(huán)球式轉向器的研發(fā),其比例已達到或超過90%;西歐一直專注于齒輪齒條式轉向器的開發(fā),該比例已超過50%。法國高達95%。由于齒輪齒條式轉向器的各種優(yōu)點,小型車輛(包括小型客車,小型貨車和客車)的應用一直在飛速發(fā)展;而大型車輛則采用循環(huán)球式舵機作為主要結構。
1.2 研究目的與意義
在現代汽車上,轉向系統(tǒng)是必不可少的最基本的系統(tǒng)之一,也是決定汽車主動安全性的關鍵總成,汽車的轉向特性,保持汽車具備較好的操縱性能,始終是汽車檢測技術當中的一個重要課題。特別是在車輛高速化、駕駛人員非職業(yè)化、車流密集化的今天,汽車轉向系的設計工作顯得尤為重要。
通過對汽車轉向系的設計可以使學生掌握汽車轉向系設計的原則和方法。培養(yǎng)理論聯系實際的技能。設計與專業(yè)關系緊密,可綜合利用所學的專業(yè)課有汽車構造、汽車設計、機械設計、工程材料和CAD繪圖等知識。
1.3 轎車轉向系統(tǒng)的要求
(1) 轎車轉彎行駛時,全部車輪應繞瞬時轉向中心旋轉,任何車輪不應有側滑。
(2) 不滿足這項要求會加速輪胎磨損,并降低汽車的行駛穩(wěn)定性。
(3) 轎車轉向行駛后,在駕駛員松開轉向盤的條件下,轉向輪能自動返回到直線
(4) 行駛位置,并穩(wěn)定行駛。
(5) 轎車在任何行駛狀態(tài)下,轉向輪都不得產生自振,轉向盤沒有擺動。
(6) ?轉向傳動機構和懸架導向裝置共同工作時,由于運動不協(xié)調使車輪產生的擺。
(7) 動應最小。
(8) 保證轎車有較高的機動性,具有迅速和小轉彎行駛能力。
(9) 操縱輕便。
(10) 轉向輪碰撞到障礙物以后,傳給轉向盤的反沖力要盡可能小。
(11) 轉向器和轉向傳動機構的球頭處,有消除因磨損而產生間隙的調整機構。
1.4 齒輪齒條轉向設計任務要求
(1) 建模僅設計轉向器部分
(2) 根據參數計算,繪制轉向(左或右)極限位置機構運動圖帶轉向梯形(A3)
(3) 根據實物分析繪制車輛液壓轉向助力液壓系統(tǒng)回路圖(A3);
(4) 轉向器具體結構可參考汽車實驗室相關制動器結構,也可由學生自行設計。
第2章 設計任務及方案擬定
2.1 設計任務要求
轉向系是用來保持或者改變汽車行使方向的機構,包括轉向操縱機構(轉向盤、轉向上、下軸、)、轉向器、轉向傳動機構(轉向拉桿、轉向節(jié))等。轉向系統(tǒng)應準確,快速、平穩(wěn)地響應駕駛員的轉向指令,轉向行使后或受到外界擾動時,在駕駛員松開方向盤的狀態(tài)下,應保證汽車自動返回穩(wěn)定的直線行使狀態(tài)。
圖2.1 轉向系
1-方向盤; 2-轉向上軸 ;3-托架; 4-萬向節(jié); 5-轉向下軸; 6-防塵罩 ;7-轉向器 ;8-轉向拉桿
一般來說,對轉向系統(tǒng)的要求如下:
轉向系傳動比包括轉向系的角傳動比(方向盤轉角與轉向輪轉角之比)和轉向系的力傳動比。在轉向盤尺寸和轉向輪阻力一定時,角傳動比增加,則轉向輕便,轉向靈敏度降低;角傳動比減小,則轉向沉重,轉向靈敏度提高。轉向角傳動比不宜低于15-16;也不宜過大,通常以轉向盤轉動圈數和轉向輕便性來確定。一般來說,轎車轉向盤轉動圈數不宜大于4圈,對轎車來說,有動力轉向時的轉向力約為20—50;無動力轉向時為50—100N。
轉向輪應具有自動回正能力。轉向輪的回正力來源于輪胎的側偏特性和車輪的定位參數。汽車的穩(wěn)定行使,必須保證有合適的前輪定位參數,并注意控制轉向系統(tǒng)的內部摩擦阻力的大小和阻尼值。
轉向桿系和懸架導向機構共同作用時,必須盡量減小其運動干涉。應從設計上保證各桿系的運動干涉足夠小。
轉向器和轉向傳動機構的球頭處,應有消除因磨損而產生的間隙的調整機構以及提高轉向系的可靠性。
轉向軸和轉向盤應有使駕駛員在車禍中避免或減輕傷害的防傷機構。
汽車在作轉向運動時,所以車輪應繞同一瞬心旋轉,不得有側滑;同時,轉向盤和轉向輪轉動方向一致。
當轉向輪受到地面沖擊時,轉向系統(tǒng)傳遞到方向盤上的反沖力要盡可能小
在任何行使狀態(tài)下,轉向輪不應產生擺振。
機動性是通過汽車的最小轉彎半徑來體現的,而最小轉彎半徑由內轉向車輪的極限轉角、汽車的軸距、主銷偏移距決定的,一般的極限轉角越大,軸距和主銷偏移距越小,則最小轉彎半徑越小。
轉向靈敏性主要通過轉向盤的轉動圈數來體現,主要由轉向系的傳動比來決定。操縱的輕便性也由轉向系的傳動比決定,但其與轉向靈敏性是一對矛盾,轉向系的傳動比越大,則靈敏性提高,輕便性下降。為了兼顧兩者,一般采用變傳動比的轉向器,或者采用動力轉向,還有就是提高轉向系的正效率,但過高正效率往往伴隨著較高的逆效率。
轉向時內外車輪間的轉角協(xié)調關系是通過合理設計轉向梯形來保證的。對于采用齒輪齒條轉向器的轉向系來說,轉向盤與轉向輪轉角間的協(xié)調關系是通過合理選擇小齒輪與齒條的參數、合理布置小齒輪與齒條的相對位置來實現的,而且前置轉向梯形和后置轉向梯形恰恰相反。
轉向輪的回正能力是由轉向輪的定位參數(主銷內傾角和主銷后傾角)決定的,同時也受轉向系逆效率的影響。選取合適的轉向輪定位參數可以獲得相應的回正力矩,但是回正力矩不能太大又不能太小,太大則會增加轉向沉重感,太小則會使回正能力減弱,不能保持穩(wěn)定的直線行駛狀態(tài)。轉向系逆效率的提高會使回正能力提高,但是會造成“打手”現象。
轉向系的間隙主要是通過各球頭皮碗和轉向器的調隙機構來調整的。
合理的選擇轉向梯形的斷開點可以減小轉向傳動機構與懸架導向機構的運動干涉。
2.2 設計任務要求
1)整車性能參數:(以下參數也可采用現場實物測繪結果)
表2.1 基本參數
名稱
軸距L
前輪距L1
后輪距L2
最小轉彎半徑R
數值
2648mm
1553mm
1544mm
4600mm
名稱
車長
車寬
車高
車質量
數值
4534mm
1823mm
1544mm
1782kg
2)設計要求:
(2) 建模僅設計轉向器部分;
(3) 根據參數計算,繪制轉向(左或右)極限位置機構運動圖帶轉向梯形;
(4) 根據實物分析繪制車輛液壓轉向助力液壓系統(tǒng)回路圖;
(5) 轉向器結構型式的選擇,提出初步方案,進行方案論證、結構分析,確定合理的結構方案;
(6) 轉向系主要的參數確定,內容包括轉向系計算載荷的確定,動力缸的設計計算,齒輪齒條式轉向器參數的計算和校核。根據計算結果,對結構尺寸參數進行調整,并最后確定結構尺寸參數;
(7) 所設計的轉向器應保證汽車在各種行駛工況下,使汽車獲得較高的機動性,同時使汽車操縱輕便;
2.3 方案擬定
適用車輛相關數據見表2.1。
轉向器的功用是將轉向盤的回轉運動轉換為轉向轉動機構的往復運動。轉向器是轉向系的減速傳動裝置,一般由1-2級減速傳動副。目前應用比較廣泛的轉向器有齒輪齒條式轉向器、循環(huán)球式轉向器、蝸桿滾輪式轉向器、蝸桿曲柄指銷式轉向器。
2.3.1 齒輪齒條轉向器的優(yōu)缺點
齒輪齒條轉向器是由轉向軸做成一體的轉向齒輪和常與轉向的齒條組成。
優(yōu)點:結構簡單、緊湊;殼體采用鋁合金或鎂合金壓鑄而成,轉向器質量比較小,傳動效率高達90%;齒輪與齒條之間因磨損而出現間隙后,利用裝在齒條背部的、靠近主動小齒輪的處的壓緊彈簧能自動消除間隙,不僅可以提高轉向系統(tǒng)的剛度,還可以防止工作時產生沖擊和噪聲;轉向器占用體積小,沒有轉向搖臂和直拉桿,所以轉向轉角可以增大,制造成本低。
缺點:齒輪齒條轉向器因逆效率高(60%~70%),汽車在不平路面上行駛時,發(fā)生在轉向輪與路面之間沖擊力的大部分能傳至方向盤,稱之反沖現象。反沖會使駕駛員精神緊張,并難以準確控制汽車的行駛方向,轉向盤突然轉動又會造成打手,同時對駕駛員造成傷害。
2.3.2 齒輪齒條轉向器的輸入形式及特點
側面輸入,中間輸出:與齒條固連的左右拉桿延伸到接近汽車縱向對稱平面附近,由于拉桿長度增加,車輪上下跳動時拉桿擺角減小,有利于減少車輪的上下跳動時轉向系與懸架系的運動干涉,拉桿與齒條用螺栓固連在一起,因此,兩拉桿與齒條同時向左或向右移動,為此在轉向器殼體上開有軸向的長槽,從而降低了他的強度。
采用兩端輸出方案時,由于轉向拉桿長度受到限制,容易與懸架系統(tǒng)導向機構產生運動干涉。
側面輸入,一端輸出的齒輪齒條轉向器,常用在平頭車上。齒輪齒條轉向器采用斜齒圓柱齒輪與斜齒齒條嚙合,增加運轉平穩(wěn)性,降低沖擊和噪聲。齒條斷面有圓形、V形和Y形三種。圓形斷面制造簡單;V形和Y形節(jié)約材料,質量小而且位于齒條下面的兩斜面與齒條托坐接觸,可以用來防止齒條繞軸線轉動。
圖2.3 轉向器輸入形式
圖2.4 V形
圖2.5 Y形
圖2.6 圓形
2.4 各種形式轉向器現狀對比
2.4.1 轉向器的功用和類型
轉向器的功能是放大駕駛員施加在方向盤上的轉矩,改變力的傳遞方向,然后傳遞給轉向傳遞機構。根據傳動副的機構,汽車中廣泛使用的幾種結構類型,如齒條齒輪式,循環(huán)球齒齒式風扇,循環(huán)滾珠曲柄式和蝸桿曲柄銷類型。
由于轉向器是一種大齒輪比的機構,其傳動效率通常較低。輸出功率與舵機輸入功率之比稱為舵機傳動效率。當從轉向軸輸入動力并從轉向搖臂軸輸出時獲得的傳動效率被稱為正效率,并且當傳動方向與該方向相反時獲得的傳動效率被稱為反轉效率。為了減少駕駛員操縱方向盤的體力,重要的是要最大限度地提高舵機的傳動效率,尤其是其正向效率。反轉效率高的轉向器稱為可逆轉向器;反轉效率較低的轉向器稱為不可逆轉向器;反轉效率稍高于不可逆轉轉向的轉向器被稱為極限可逆轉向器,其后向傳動力性能介于可逆和不可逆轉之間,接近不可逆轉。
可逆轉向器能夠將轉向傳遞機構傳遞的路面反作用力容易地傳遞給方向盤,有利于車輛轉向完成后方向盤和方向盤的自動轉向,壞道對車輪的影響。傳給方向盤的是“撞擊”現象??赡孓D向器通常用于通常路況良好的汽車。不可逆轉的轉向裝置不允許方向盤上的沖擊力傳遞給方向盤,但它也不會自動地使方向盤和方向盤返回,并且還防止駕駛員感覺到面向方向盤的地面方向盤上的車輪。強制信息,即所謂的“路感”的喪失。因此,目前這種轉向器通常不用于汽車。限位可逆轉向器給駕駛者一定的道路感,方向盤和方向盤也有一定的正向回復力矩,當道路沖擊力較大時只能部分傳遞給方向盤。這種轉向器主要用于中型及以上的越野車和自卸車。
在整個轉向系統(tǒng)中,傳動部件之間必須有裝配間隙,并且這些間隙會隨著部件的磨損而增加,這反映出方向盤將具有方向盤的自由行程,并且方向盤自由行程將會減輕道路的影響。避免對駕駛員造成過大壓力是有益的,但不應該太大,否則會降低駕駛靈敏度。通常,方向盤從對應于車輛直線行駛的中間位置向相反方向中的任一方向的自由行程通常不超過10°至15°;當方向盤的磨損如此嚴重以致方向盤的自由行程超過25°至30°時,必須通過調整轉向齒輪傳動裝置的傳動間隙和軸承間隙來調整。
2.4.2 轉向器結構
2.4.2.1 齒輪齒條轉向器
圖2.5顯示了Santana的齒輪齒條式轉向器。變速器輔助構件的轉向齒輪3與轉向齒條2嚙合。壓縮彈簧經由壓力塊7將轉向齒條壓靠轉向機構以確保沒有間隙接合。彈簧的預載可以通過調節(jié)螺釘4調節(jié)。當方向盤轉動時,轉向齒輪轉動,使嚙合的轉向齒條沿軸向移動。因此,左右拉桿驅動轉向節(jié)左右轉動,使得方向盤偏轉。
圖2.7 桑塔納齒輪齒條轉向器結構
該齒輪齒條式轉向器結構簡單,制造簡單,重量輕,剛度高,轉向靈敏,成本低,正反轉效率高,特別適用于蠟燭式和麥弗遜式懸架。易于安排等優(yōu)勢,已被廣泛應用,如一汽紅旗CA7220轎車,奧迪轎車,捷達轎車,上海桑塔納轎車,帕薩特轎車,大眾波羅轎車,廣州本田轎車,天津夏利轎車和天津TJ1010小型貨車及南京依維柯輕型卡車等正在使用齒輪齒條式轉向器。
齒條齒輪傳動的基本原理如圖2.6所示。
圖2.8 齒輪齒條傳動基本原理
2.4.2.2 循環(huán)球—齒條齒扇式轉向器
循環(huán)球式轉向器中一般有兩級傳動副,第一級是螺桿螺母傳動副,第二級是齒條齒山傳動副。如圖2.7所示,轉向螺母既是第一級傳動副的從動件,又是第二級傳動副的主動件。為了減少轉向螺桿3與螺母之間的摩擦與磨損,二者螺紋不直接接觸,而是作為滾珠5的內外滾道,其間裝有許多的滾珠,以實現滾動摩擦。轉向螺母上裝有兩個滾珠導管7,每個滾珠導管的兩端分別插入轉向螺母側面的孔中。滾珠導管也裝滿滾珠,形成兩個各自獨立的封閉通道。當轉向盤轉動時,轉動軸帶動轉向螺桿旋轉,通過滾珠將力傳給螺母,使得轉向螺母沿軸向移動,從而通過轉向螺母外部的齒條帶動了扇形齒輪軸20轉動,進而帶動轉向搖臂軸轉動,實現轉向輪的偏轉。
循環(huán)球—齒條齒扇式轉向器的正傳動效率很高(90%到95%),故操操縱輕便,使用壽命長,工作平穩(wěn),可靠。但其逆效率也很高,可將地面對轉向輪的沖擊力傳給轉向盤。經常在良好路面行駛的汽車,上述缺點對其影響不大。循環(huán)球式轉向器應用于各類各級汽車,如解放CA1040系列輕型載貨汽車、北京BJ1041型、北京2023型、解放CA1091型和黃河JN1181C13型等汽車都采用這種轉向器。
圖2.9 循環(huán)球—齒條齒扇式轉向器結構
2.4.2.3 蝸桿曲柄指銷式轉向器
蝸桿曲柄指銷式轉向器將具有梯形截面螺紋的轉向蝸桿支承在轉向器殼體兩端的球軸承上,轉向蝸桿與錐形指銷相嚙合,錐形指銷用雙列圓錐滾子軸承支于搖臂軸內端的曲柄孔中。當轉向蝸桿隨轉向盤轉動時,指銷沿蝸桿螺旋槽上下移動,并帶動曲柄及搖臂軸轉動。
目前汽車使用的蝸桿曲柄指銷式轉向器多數是雙指銷式。轉向蝸桿3支承于轉向器殼體兩端的兩個角接觸推力球軸承2和9上。轉向器蓋6上裝有調整螺塞7,用于調整上述兩軸承的松緊度,調整后用螺母鎖緊。蝸桿與兩個錐形指銷11相嚙合。兩個指銷均用雙列圓錐滾子軸承12支承于搖臂軸20內端的曲柄上,其中靠指銷頭部的一列無內座圈滾子直接與指銷軸頸接觸。這樣,所受剪切載荷最大的這段軸頸的直徑可做得大一些,以保證指銷有足夠的強度。指銷裝在滾動軸承上可以減輕蝸桿和指銷的磨損,并提高傳動效率。螺母13用以調整軸承12的松緊度,以使指銷能自由轉動,且無明顯的軸向間隙為宜。搖臂軸用粉末冶金襯套17和18支承在殼體中。指銷同蝸桿的嚙合間隙用側蓋14上的調整螺釘15調整,調整后用螺母16鎖緊。
雙指銷式轉向器在中間及其附近位置時,其兩指銷均與蝸桿嚙合,故每個指銷所承載荷較單指銷式轉向器的指銷載荷為小,因而其工作壽命較長。當搖臂軸轉角相當大時,一個指銷與蝸桿脫離嚙合,另一指銷仍保持嚙合。因此,雙指銷式的搖臂軸轉角范圍較單指銷式為大。但雙指銷式結構較復雜,對蝸桿的加工精度要求也較高。
圖2.10 蝸桿曲柄指銷式轉向器
第3章 轉向梯形設計與計算
3.1 設計轉向梯形時應滿足要求
1、內、外車輪轉角θi、θo關系正確,保證全部車輪繞一個瞬時轉向中心行駛,各車輪盡可能作無滑動的純滾動運動。
2、轉向輪有足夠大的轉角,保證給定的D min。
3、在汽車上有足夠的高度,高于前部h min。
3.2 轉向梯形結構方案分析
轉向梯形有整體式與斷開式。
(1) 整體式轉向梯形
整體式轉向梯形是由轉向橫拉桿1、轉向梯形臂2和汽車前軸3組成,如圖3.1所示。其中梯形臂呈收縮狀向后延伸。這種方案的優(yōu)點是結構簡單,調整前束容易,制造成本低;主要缺點是一側轉向輪上、下跳動時,會影響另一側轉向輪。
圖3.1 整體式轉向梯形
圖3.2 斷開式轉向梯形
(2) 斷開式轉向梯形
轉向梯形的橫拉桿做成斷開的,稱為斷開式轉向梯形。斷開式轉向梯形方案之一如圖3.2所示。斷開式轉向梯形的主要優(yōu)點是它與前輪采用的獨立懸架相配合,能夠保證一側車輪上、下跳動時,不會影響到另一側車輪。與整體式轉向梯形比較,由于其桿系、球頭多,所以結構復雜;制造成本高;并且調整前束比較困難。
3.2.1 轉向梯形計算
汽車轉向行駛時,受到彈性車輪側偏角的影響,所有車輪不是繞位于后軸延長線上的點滾動,而是繞位于前軸和后軸之間的汽車內側某一點滾動。此點位置與前輪和后輪的側偏角大小有關。由于影響輪胎側偏角的因素很多,而且難以精確確定,故下面是忽略側偏角影響條件下,分析有關兩軸汽車的轉向問題。此時,兩轉向前輪軸線的延長線交于后軸延長線上,如圖3.3所示。設θi、θo為內、外車輪轉角,L為汽車軸距,K為兩主銷中心線延長線到地面交點之間的距離。若要保證全部車輪繞一個瞬時轉向中心行駛,則梯形機構應保證內外轉向車輪的轉角關系為
若θo為自變量,則因變角θi的期望值為
圖3.3 轉向示意圖
圖3.4 設計圖例
第4章 轉向器的設計與校核
4.1 轉向系計算載荷的確定
為了行駛安全,組成轉向系的各零件應有足夠的強度。欲驗算轉向系零件的強度需首先確定作用在各零件上的力。影響這些力的主要因素有轉向軸的負荷,路面阻力和輪胎氣壓等。為轉動轉向輪要克服的阻力,包括轉向輪繞主銷轉動的阻力、車輪穩(wěn)定阻力、輪胎變形阻力和轉向系中的內摩擦阻力等。
4.1.1 原地轉向阻力矩
精確地計算這些力是困難的,為此推薦用足夠精確的半經驗公式來計算汽車在瀝青或者混凝土路面上的原地轉向阻力矩,即,式中,f為輪胎和路面間的滑動摩擦因數,一般取0.7;為轉向軸負荷(N);p為輪胎氣壓(MPa)。
=55%g=55%*(905+80+75*4)*9.8N
=6926.15N
=N=286775.33
(1) f=0.7
(2) 按《汽車設計》,取滿載質量m的55%
(3) p=0.22Mpa
(4) 車整備質量=905kg
4.1.2 轉向盤手力
作用在轉向盤上的手力為:。式中為轉向搖臂長;為轉向節(jié)壁長;為轉向盤直徑;為轉向器角傳動比;為轉向器正效率。由《汽車設計》,在0.85~1.1之間,可近似是1。
=
=88.15N
=88.15*0.4*0.5
=17.702
(1) 轉向盤直徑在380~550mm之間,選=400mm
(2) 齒輪齒條最大正傳動效率=90%
(3) 轉向器角傳動比在17~19間,選=18
4.2 齒輪齒條設計
齒輪齒條轉向器的齒輪多數采用斜齒輪。齒輪模數多在2—3mm之間,主動小齒輪齒數多數在5—7個齒范圍變化,壓力角去,齒輪螺旋角的取值范圍多為。齒條齒數應根據轉向輪達到最大偏轉角時,相應的齒條移動行程應達到的值來確定。變速比的齒輪壓力角,對現有結構在范圍內變化。此外,設計時應驗算齒輪的抗彎強度和接觸強度 。
齒條選用45鋼制造,而主動小齒輪選用20CrMo材料制造,為減輕質量殼體用鋁合金壓鑄。
正確嚙合條件:;;
根據設計的要求,齒輪齒條的主要參數見下表:
表4.1 齒輪齒條的主要參數
名稱
齒輪
齒條
齒數Z
6
22
模數Mn
2.5
2.5
壓力角
螺旋角
β1=
β2=-
變位系數Xn
0
0
齒輪: = =15.3
齒頂高
齒輪: = 2.5
齒條:2.5
齒根高
齒輪: = 3.125
齒條: = 3.125
齒全高 h
齒輪:5.625
齒條:5.625
齒頂圓
齒輪: = 20.3
齒根圓
齒輪:9.05
基圓直徑
由 得20.41
齒輪:
表4.2 齒輪齒條的結構尺寸
名稱
齒輪
齒條
分度圓直徑
15.3
齒頂高
2.5
2.5
齒根高
3.125
3.125
齒全高 h
5.625
5.625
齒頂圓
20.3
齒根圓
9.05
基圓直徑
14.34
齒寬b
40
20
4.3 齒條的強度計算
4.3.1 齒條的受力分析
在本設計中,選取轉向器輸入端施加的扭矩 T = 20Nm,齒輪傳動一般均加以潤滑,嚙合齒輪間的摩擦力通常很小,計算輪齒受力時,可不予考慮。
齒輪齒條的受力狀況類似于斜齒輪,齒條的受力分析如圖
圖4.2 齒條的受力分析
如圖,作用于齒條齒面上的法向力Fn,垂直于齒面,將Fn分解成沿齒條徑向的分力(徑向力)Fr,沿齒輪周向的分力(切向力)Ft,沿齒輪軸向的分力(軸向力)Fx 。各力的大小為:
Ft=2T/d
Fr=Ft*tg/ cosβ1
Fx=Ft*tgβ1
Fn = Ft/(cos*cosβ1)
——齒輪軸分度圓螺旋角 (由表1查得)
——法面壓力角 (由表1查得)
齒輪軸受到的切向力:
Ft = 2T/d = 2614.38 N
T——作用在輸入軸上的扭矩,T取20Nm 。
d——齒輪軸分度圓的直徑,
齒條齒面的法向力:
Fn=Ft/(cos*cosβ1) =2841N
齒條牙齒受到的切向力:
=2669.67N
齒條桿部受到的力:
β2 = 2611.33N
4.3.2 齒條桿部受拉壓的強度計算
計算出齒條桿部的拉應力:
= F / A =11.1N/mm
F——齒條受到的軸向力
A——齒條根部截面積 ,A =334.6mm
由于強度的需要,齒條長采用45鋼制造,其抗拉強度極限是 = 690N/mm,(沒有考慮熱處理對強度的影響)[2]。
因此 <
所以,齒條設計滿足抗拉強度設計要求。
4.3.3 齒條齒部彎曲強度的計算
齒條牙齒的單齒彎曲應力:
式中: ——齒條齒面切向力
b—— 危險截面處沿齒長方向齒寬
——齒條計算齒高
S ——危險截面齒厚
從上面條件可以計算出齒條牙齒彎曲應力:
=451.16N/mm
上式計算中只按嚙合的情況計算的,即所有外力都作用在一個齒上了,實際上齒輪齒條的總重合系數是2.63(理論計算值),在嚙合過程中至少有2個齒同時參加嚙合,因此每個齒的彎曲應力應分別降低一倍。
= 182.2N/mm
齒條的材料我選擇是 45剛制造,因此:
抗拉強度 690N/mm (沒有考慮熱處理對強度的影響)。
齒部彎曲安全系數
S = / = 3.8
因此,齒條設計滿足彎曲疲勞強度設計要求。又滿足了齒面接觸強度,符合本次設計的具體要求。
4.4 小齒輪的強度計算
4.4.1 齒面接觸疲勞強度計算
計算斜齒圓柱齒輪傳動的接觸應力時,推導計算公式的出發(fā)點和直齒圓柱齒輪相似,但要考慮其以下特點:嚙合的接觸線是傾斜的,有利于提高接觸強度 ;重合度大,傳動平穩(wěn)。
齒輪的計算載荷
為了便于分析計算,通常取沿齒面接觸線單位長度上所受的載荷進行計算。沿齒面接觸線單位長度上的平均載荷P(單位為N/mm)為
P =
Fn ——作用在齒面接觸線上的法向載荷
L ——沿齒面的接觸線長,單位mm
法向載荷Fn 為公稱載荷,在實際傳動中,由于齒輪的制造誤差,特別是基節(jié)誤差和齒形誤差的影響,會使法面載荷增大。此外,在同時嚙合的齒對間,載荷的分配不是均勻的,即使在一對齒上, 載荷也不可能沿接觸線均勻分布。因此在計算載荷的強度時,應按接觸線單位長度上的最大載荷,即計算Pca (單位N/mmm)進行計算。即
Pca = KP =K
K——載荷系數
載荷系數K包括 :使用系數,動載系數,齒間載荷分配系數及齒向載荷分布數,即
K =
使用系數
是考慮齒輪嚙合時外部領接裝置引起的附加動載荷影響的系數。
= 1.0
動載系數
齒輪傳動制造和裝配誤差是不可避免的,齒輪受載后還要發(fā)生彈性變形,因此引入了動載系數。
= 1.0
齒間載荷系數
齒輪的制造精度7級精度[2]
= 1.2
齒向荷分配系數
齒寬系數 φd = b/d = 18.14/12.13 = 1.5
= 1.12+0.18(1+0.6φd) + 0.23*10b = 1.5
所以載荷系數 K= = 1*1*1.2*1.5 = 1.8
斜齒輪傳動的端面重合度
= bsin = 0.318φd*ztan = 1.65
在斜齒輪傳動中齒輪的單位長度受力和接觸長度如下:
P ca = KP =K
因為
Fn = Ft/(cos*cosβ1)
所以
=1.8*3297.6/18.14/1.65/0.67= 296N/mm
可以認為一對斜齒圓柱齒輪嚙合相當于它們的當量直齒輪嚙合,利用赫茲公式,代入當量直齒輪的有關參數后,得到斜齒圓柱齒輪的齒面接觸疲勞強度校核公式[2] :
=
式中:
Z -彈性系數
主動小齒輪選用材料20CrMo制造,根據材料選取,均為0.3, E,E都為合金鋼 , 取189.8 MPa
求得 Z = 5.7
-節(jié)點區(qū)域系數
Z = 2.24
齒輪與齒條的傳動比 u , u趨近于無窮
則
所以 = 51.6 MPa
小齒輪接觸疲勞強度極限
= 1000 MPa
應力循環(huán)次數
N = 2*10
所以 = 1.1
計算接觸疲勞許用應力
取失效概率為1%,安全系數S = 1,可得
= 1.1*1000MPa = 1100MPa (4-38)
K ——接觸疲勞壽命系數
由此可得 <
所以,齒輪所選的參數滿足齒輪設計的齒面接觸疲勞強度要求。
4.4.2 齒輪齒跟彎曲疲勞強度計算
齒輪受載時,齒根所受的彎矩最大,因此齒根處的彎曲疲勞強度最弱。當齒輪在齒頂處嚙合時,處于雙對齒嚙合區(qū),此時彎矩的力臂最大,但力并不是最大,因此彎矩不是最大。根據分析,齒根所受的最大玩具發(fā)生在輪齒嚙合點位于單對齒嚙合最高點時。因此,齒根彎曲強度也應按載荷作用于單對齒嚙合區(qū)最高點來計算。
斜齒輪嚙合過程中,接觸線和危險截面位置在不斷的變化,要精確計算其齒根應力是很難的,只能近似的按法面上的當量直齒圓柱齒輪來計算其齒根應力
收藏
編號:21140070
類型:共享資源
大?。?span id="b9tjm2q" class="font-tahoma">9.22MB
格式:ZIP
上傳時間:2021-04-24
40
積分
- 關 鍵 詞:
-
說明書+CAD+UG
齒輪齒條轉向器的設計【說明書+CAD+UG】
齒輪
齒條
轉向器
設計
說明書
仿單
cad
ug
- 資源描述:
-
齒輪齒條轉向器的設計【說明書+CAD+UG】,說明書+CAD+UG,齒輪齒條轉向器的設計【說明書+CAD+UG】,齒輪,齒條,轉向器,設計,說明書,仿單,cad,ug
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。