彈指式小型紅棗撿拾機(jī)的設(shè)計(jì)【紅棗收獲機(jī)】【說明書+CAD+SOLIDWORKS】,紅棗收獲機(jī),說明書+CAD+SOLIDWORKS,彈指式小型紅棗撿拾機(jī)的設(shè)計(jì)【紅棗收獲機(jī)】【說明書+CAD+SOLIDWORKS】,彈指,小型,紅棗,撿拾,設(shè)計(jì),收獲,收成,說明書,仿單,cad,solidworks
13屆畢業(yè)設(shè)計(jì)
彈指式小型紅棗撿拾機(jī)
設(shè)計(jì)說明書
學(xué)生姓名 聶 劍
學(xué) 號(hào) 8031209225
所屬學(xué)院 機(jī)械電氣化工程學(xué)院
專 業(yè) 農(nóng)業(yè)機(jī)械化及其自動(dòng)化
班 級(jí) 13-2
指導(dǎo)教師 范修文
日 期 2013.05
塔里木大學(xué)機(jī)械電氣化工程學(xué)院制
前 言
紅棗是我國廣泛種植的特色林果,其種植面積和產(chǎn)量占全世界的 99%。紅棗中含有豐富的蘆丁、環(huán)磷酸腺苷,能夠防止和治療心腦血管疾病,具有抗過敏作用,抑制癌細(xì)胞生長(zhǎng)并促進(jìn)癌細(xì)胞轉(zhuǎn)化成正常細(xì)胞的功能,其經(jīng)濟(jì)價(jià)值和藥用價(jià)值極高。地處歐亞大陸腹地,干旱少雨,日照長(zhǎng),光熱資源豐富,晝夜溫差大,適宜栽培品質(zhì)優(yōu)良、產(chǎn)量高的紅棗。近年來,紅棗的種植面積不斷增長(zhǎng),目前紅棗的種植面積近26.7萬平方千米。但紅棗的收獲主要依賴于人工,勞動(dòng)強(qiáng)度大、效率低、成本高,且收獲季節(jié)多與棉花等其它經(jīng)濟(jì)作物收獲期重合,導(dǎo)致雇工極其困難,不能適時(shí)收獲,造成不必要的損失。隨著紅棗規(guī)?;?、產(chǎn)業(yè)化發(fā)展,依靠人工收獲已不能滿足紅棗產(chǎn)業(yè)化生產(chǎn)的需求,實(shí)現(xiàn)紅棗機(jī)械化收獲已是紅棗產(chǎn)業(yè)發(fā)展的必然趨勢(shì)。
關(guān)鍵詞:紅棗;機(jī)械化;采收
目 錄
1緒論 1
1.1課題研究的意義 1
1.2國內(nèi)外現(xiàn)狀及分析 1
1.3.研究的內(nèi)容和方法 2
2彈指式紅棗撿拾機(jī)的結(jié)構(gòu)設(shè)計(jì) 2
2.1總體設(shè)計(jì)方案 2
2.2各個(gè)主要部件的結(jié)構(gòu)示意圖及其功能 3
2.2動(dòng)力的選擇 5
2.3設(shè)計(jì)要求 5
2.4設(shè)計(jì)方案 5
3彈指式紅棗撿拾機(jī)的零件設(shè)計(jì) 5
3.1 計(jì)算撿拾棍帶輪直徑及轉(zhuǎn)速 5
3.2 V帶的選取 6
3.3 V帶線速度的檢驗(yàn) 7
3.4 計(jì)算中心距及基準(zhǔn)長(zhǎng)度 7
3.5計(jì)算A型普通v帶根數(shù) 8
3.6求作用在帶輪軸上的壓力 8
3.7計(jì)算帶傳動(dòng)作用在軸上的力(簡(jiǎn)稱壓軸力) 9
3.8 撿拾裝置帶輪結(jié)構(gòu)參數(shù) 9
3.9撿拾裝置軸與齒輪的計(jì)算 10
總結(jié) 16
致 謝 16
參考文獻(xiàn) 18
塔里木大學(xué)畢業(yè)設(shè)計(jì)
1緒論
1.1課題研究的意義
據(jù)史料記載,棗是原產(chǎn)中國的傳統(tǒng)名優(yōu)特產(chǎn)樹種。經(jīng)考古學(xué)家從新鄭斐李崗文化遺址中發(fā)現(xiàn)棗核化石,證明棗在我國已有8000多年歷史。
隨著紅棗的種植面積的增加,紅棗的機(jī)械化作業(yè)在紅棗栽培中的重要性逐漸凸顯。依據(jù)最近幾年林果業(yè)發(fā)展的態(tài)式分析,果樹種植每年以10%的速度遞增,由于林果業(yè)的快速發(fā)展,各地已形成了較大的種植規(guī)模,每到收獲季節(jié)需要投入大量的勞力來完成水果采收。可以預(yù)見到,再過3~5 年,新種植的果樹進(jìn)入盛果期后, 水果采收作業(yè)將會(huì)出現(xiàn)因勞動(dòng)力短缺、采收不及時(shí),而直接影響果品質(zhì)量和造成大量損失的問題。這是因?yàn)?,水果采摘是一?xiàng)勞動(dòng)投入量很大的作業(yè),有些水果因成熟期不一致,需要多次采摘才能完成收獲;另外,水果收獲是在離地面有3~5 m高的空中作業(yè),以上原因決定了水果采摘是一項(xiàng)費(fèi)時(shí)、費(fèi)工、費(fèi)力的作業(yè)。人工采收水果的速度緩慢,大面積發(fā)展水果種植時(shí),必須要依靠機(jī)械化來提高采摘效率。彈指式紅棗收獲機(jī)械的研究,就是針對(duì)疆內(nèi)紅棗的采摘要求自主研發(fā)的采摘機(jī)械,紅棗的機(jī)械化收獲對(duì)提高收獲效率, 降低收獲作業(yè)成本, 做到適時(shí)收獲, 提高采凈率都有很大的幫助。
1.2國內(nèi)外現(xiàn)狀及分析
根據(jù)全國各地調(diào)查資料顯示,目前我國的水果機(jī)械化還只是停留在節(jié)水滴灌、灌溉施肥一體化、包裝保鮮等有限的幾個(gè)工序上,在清洗、分級(jí)中偶有使用,而水果采摘機(jī)械還是很少。我國的水果采摘機(jī)械種類很少,大型的機(jī)械化設(shè)備使用率很低,只有少量的半自動(dòng)機(jī)械在使用。
到本世紀(jì)初,我們國家雖然紅棗的種類很多,種植面積大。但是對(duì)于機(jī)械化采摘紅棗的技術(shù)還是比較少,機(jī)械化作業(yè)水平很低,需要注入新的采摘機(jī)械。
農(nóng)墾科學(xué)院機(jī)械裝備研究所研制的紅棗收獲機(jī)。這是首臺(tái)用于紅棗采摘的收獲機(jī)。該機(jī)全稱是“4YS-24紅棗收獲機(jī)”,使用東方紅400型拖拉機(jī)驅(qū)動(dòng);機(jī)械手臂在液壓控制操作下,可以上下、左右、前后、高低靈活運(yùn)動(dòng),準(zhǔn)確地鉗住紅棗樹干并進(jìn)行低頻振動(dòng)。大型的采摘機(jī)械多為震搖式,震搖式采摘采摘時(shí)沒有選擇性,容易把樹枝樹葉等搖落,不適用于采摘高大的紅棗樹[1]。
國外對(duì)水果機(jī)械化收獲技術(shù)的研究較多,機(jī)械采收在美國、西班牙、俄羅斯、意大利、英國、德國、丹麥、匈牙利等國家的果園應(yīng)用較為普遍。目前, 機(jī)采量較大的果樹作物有蘋果、葡萄、甜橙、桃、李、杏、櫻桃、越桔、油橄欖、核桃、扁桃等。他們采用的機(jī)械收獲方法主要有:震搖法、梳刷法、撞擊法、水力法、半機(jī)械化采收等方法[2]。但是,針對(duì)紅棗收獲的采摘機(jī)械比較少。
對(duì)于紅棗撿拾機(jī)可以參考打瓜的撿拾裝置[3]。國外的打瓜撿拾裝置的結(jié)構(gòu)主要有幾種,一種是根據(jù)打瓜長(zhǎng)度設(shè)計(jì)的臂架結(jié)構(gòu)的收割撿拾器,前進(jìn)作業(yè)時(shí)上下浮動(dòng)將打瓜從地上檢起,進(jìn)人輸送裝置;第二種是圓盤狀的結(jié)構(gòu),根據(jù)打瓜的大小在圓盤兩側(cè)加裝斜凸出的擋板,在工作時(shí)利用擋板和圓盤轉(zhuǎn)動(dòng)的慣性力將打瓜撿拾起;另外一種結(jié)構(gòu)是一種圓筒型式的撿拾裝置,根據(jù)打瓜的大小在圓筒外壁上加裝幾塊板狀或棍狀的挑撥齒結(jié)構(gòu),工作時(shí),圓筒旋轉(zhuǎn),附帶著挑撥齒做圓周運(yùn)動(dòng),靠慣性力將打瓜撿拾起來送人輸送裝置,同這兩種結(jié)構(gòu)相似之處是根據(jù)打瓜大小設(shè)計(jì)的圓筒型結(jié)構(gòu)內(nèi)凹的裝置。在后期的發(fā)展中,撿拾裝置的結(jié)構(gòu)由原來的檔板式的撿拾板改進(jìn)為柵欄狀的結(jié)構(gòu),靠撿拾輥和擋板撿拾打瓜[4]。
國內(nèi)的打瓜撿拾裝置的結(jié)構(gòu),一種是機(jī)架中部的滾筒上均布設(shè)置拾瓜裝置;另一種是在撿拾輥上均布扎瓜齒型結(jié)構(gòu),打瓜撿拾起來之后由后面的瓜齒分離器將打瓜和齒輥分開,打瓜進(jìn)入輸送裝置。從結(jié)構(gòu)上分析,打瓜機(jī)結(jié)構(gòu)由靠慣性力撿拾的刮板型和夾持型向檢拾輥上加裝扎瓜齒型發(fā)展,由于扎瓜齒能夠?qū)⒐侠卫卧5]。
1.3國內(nèi)外紅棗撿拾機(jī)械的存在的問題
首先,現(xiàn)在國內(nèi)的紅棗收獲機(jī)暫還在發(fā)展階段,把紅棗從棗樹上震搖下來現(xiàn)在可以實(shí)現(xiàn)機(jī)械作業(yè),但是在紅棗落地以后主要還是依靠人工撿拾,這樣的不利因素是在人工緊缺的時(shí)候紅棗不能及時(shí)收獲入庫并進(jìn)行加工,會(huì)造成果品品質(zhì)大幅下降,造成不必要的經(jīng)濟(jì)損失。
其次,紅棗撿拾機(jī)械不同于打瓜撿拾機(jī)械,打瓜撿拾對(duì)于打瓜表面由機(jī)械造成的傷害沒有要求,而紅棗在撿拾過程中應(yīng)該將機(jī)械損傷將為零,所以不能采取扎取式進(jìn)行撿拾。為了減小收獲對(duì)紅棗的機(jī)械損傷,應(yīng)該采取彈指式撿拾收獲。彈指式是仿照人的指頭進(jìn)行作業(yè),不會(huì)對(duì)紅棗造成機(jī)械損傷[6]。
因此本文針對(duì)上述問題,設(shè)計(jì)彈指式紅棗撿拾機(jī),即可以降低勞動(dòng)力的投入,解放人力資源。已達(dá)到再投入降低的同時(shí),讓紅棗的產(chǎn)值達(dá)到最大化的目的。
1.4研究的內(nèi)容和方法
根據(jù)我國紅棗收獲機(jī)械的發(fā)展現(xiàn)狀和存在的問題以及種植戶的更高要求,設(shè)計(jì)出一款實(shí)用性很強(qiáng)的彈指式紅棗撿拾機(jī)。
設(shè)計(jì)彈指式紅棗撿拾機(jī)的整體結(jié)構(gòu),主要由動(dòng)力源、傳動(dòng)裝置、彈指式撿拾裝置、裝載裝置、行走膠輪、雜物清理裝置等組成。拖拉機(jī)提供動(dòng)力,通過聯(lián)軸器與減速器連接,為撿拾裝置提供動(dòng)力。
2彈指式紅棗撿拾機(jī)的結(jié)構(gòu)設(shè)計(jì)
2.1總體設(shè)計(jì)方案
彈指式紅棗撿拾機(jī)的設(shè)計(jì)需要充分發(fā)揮機(jī)械的特性,最大限度的利用機(jī)械結(jié)構(gòu)對(duì)紅棗進(jìn)行采集并且保證收獲的紅棗質(zhì)量和采凈率。機(jī)械化收獲是整個(gè)生產(chǎn)環(huán)節(jié)里的重要部分。所以紅棗采集的技術(shù)的研究是刻不容緩。
根據(jù)網(wǎng)上信息的搜索,結(jié)合實(shí)際情況本機(jī)械的基本要求是:減少對(duì)果實(shí)的機(jī)械損傷;提高采集裝置承接的效率;傳動(dòng)裝置要配套和采摘機(jī)械相互協(xié)調(diào)。
紅棗撿拾機(jī)模型如下圖:
圖2-1 紅棗撿拾機(jī)模型
工作原理:該彈指式紅棗撿拾機(jī)其掛在拖拉機(jī)前配重處,拖拉機(jī)推動(dòng)其前進(jìn),地輪帶動(dòng)撿拾棍轉(zhuǎn)動(dòng),撿拾棍上的是彈指對(duì)地上的紅棗施加力,紅棗由于力的作用彈入撿拾機(jī)機(jī)殼內(nèi),進(jìn)入機(jī)殼內(nèi)的半圓槽體后,由絞龍將紅棗持續(xù)輸入到槽體左側(cè),由槽體的漏口出進(jìn)入紅棗送裝置,該輸送裝置為刮板式輸送器,最終通過輸送裝置將紅棗輸送至紅棗的盛放車斗內(nèi),至此完成紅棗的撿拾。
2.2各個(gè)主要部件的結(jié)構(gòu)示意圖及其功能
2.2.1彈指式撿拾器
圖2-2 彈指式撿拾器正視圖
圖2-3 彈指式撿拾器左視圖
該裝置為彈指式撿拾器,它的工作原理為由地輪傳動(dòng)為其提供動(dòng)力,其轉(zhuǎn)動(dòng)方向與地輪轉(zhuǎn)動(dòng)方向一致,工作時(shí)彈指會(huì)有一定得入土深度,利用彈指的彈性勢(shì)能將紅棗彈起并進(jìn)入撿拾機(jī)的殼體內(nèi)。
2.2.2側(cè)向傳輸裝置
圖2-4 側(cè)向傳輸裝置
該裝置為螺旋推送裝置,其工作原理為旋轉(zhuǎn)的螺旋葉片將物料推移而進(jìn)行螺旋輸送機(jī)輸送,使物料不與螺旋輸送機(jī)葉片一起旋轉(zhuǎn)的力是物料自身重量和螺旋輸送機(jī)機(jī)殼對(duì)物料的摩擦阻力。
2.2.3刮板式輸送器
圖2-5 刮板式輸送器
刮板式輸送器輸送時(shí)紅棗從下端送入,由回旋的刮板將物料刮送升運(yùn),在外殼上端經(jīng)排料口卸下紅棗。卸下的紅棗最終進(jìn)入車斗內(nèi)。
2.2.4地輪
圖2-6 撿拾器地輪
上圖為彈指式紅棗撿拾機(jī)的地輪,它的功能為支撐整個(gè)機(jī)器。其次還可以起到仿形裝置的作用,解決田間地勢(shì)不平的問題。
2.2動(dòng)力的選擇
該撿拾機(jī)械是與拖拉機(jī)進(jìn)行配套,將撿拾機(jī)械配合于拖拉機(jī)的前配重插孔處[7]。撿拾動(dòng)力來源于地輪傳動(dòng),當(dāng)拖拉機(jī)前進(jìn)時(shí)推動(dòng)彈指式紅棗撿拾機(jī)前進(jìn),地輪也隨之轉(zhuǎn)動(dòng),動(dòng)力的大小是由拖拉機(jī)推動(dòng)彈指式紅棗撿拾機(jī)在田間的行使速度決定的,地輪的轉(zhuǎn)速高,帶動(dòng)的撿拾輥的帶輪也轉(zhuǎn)速高。
2.3設(shè)計(jì)要求
(1)由于田間作業(yè)場(chǎng)地的約束,本設(shè)計(jì)應(yīng)該盡量小巧緊湊
(2)各個(gè)零件之間盡量不采用焊接及剛性固定,便于零件的更換及修理
(3)制造材料應(yīng)該合理選取,節(jié)約成本
(4)機(jī)器操作性要強(qiáng),操作簡(jiǎn)單,便于使用
2.4設(shè)計(jì)方案
(1)對(duì)機(jī)械傳動(dòng)系統(tǒng)和執(zhí)行機(jī)構(gòu)以及輸送機(jī)構(gòu)進(jìn)行運(yùn)動(dòng)尺寸計(jì)算;
(2)根據(jù)田間實(shí)際作業(yè)需要設(shè)定彈指式紅棗撿拾機(jī)的尺寸;
(3)進(jìn)行各個(gè)傳動(dòng)軸及齒輪的設(shè)計(jì)計(jì)算;
(4)進(jìn)行紅棗傳輸方案的確定。
3彈指式紅棗撿拾機(jī)的零件設(shè)計(jì)
3.1 計(jì)算撿拾棍帶輪直徑及轉(zhuǎn)速
設(shè)定撿拾機(jī)行駛速度為0.8m/s,地輪直徑為210mm,地輪軸上的帶輪直徑為180mm。
地輪連接的皮帶輪與撿拾棍帶輪的傳動(dòng)比為1/3。
則地輪周長(zhǎng)為
則地輪轉(zhuǎn)速為,即
因?yàn)椋鶕?jù)
所以
則取,則
所以, 取帶輪直徑為63mm
3.2 V帶的選取
撿拾棍與地輪傳動(dòng)的連接形式為V帶傳動(dòng)如下圖
圖3-1 V帶傳動(dòng)示意圖
根據(jù)查表得輪胎與干燥的土路摩擦系數(shù)為0.025-0.035,與沙地的摩擦系數(shù)為0.100-0.300,與濕的土路的摩擦系數(shù)為0.050-0.150。設(shè)彈指式紅棗撿拾裝置與地面的
壓力為2000N,根據(jù)現(xiàn)實(shí)情況選取取,則根據(jù)公式
(3-2)
取地輪功率為
V帶速度為= (3-3)
計(jì)算帶輪功率
(3-4)
(由下表得工作情況系數(shù)K=1.1)
表3-1 工作情況系數(shù)
載荷性質(zhì)
工作機(jī)
原動(dòng)機(jī)
電動(dòng)機(jī)(交流啟動(dòng)、三角啟動(dòng)、直流并勵(lì))、四缸以上的內(nèi)燃機(jī)
電動(dòng)機(jī)(聯(lián)機(jī)交流啟動(dòng)、直流復(fù)勵(lì)或串勵(lì))四缸以下的內(nèi)燃機(jī)
每工作小時(shí)數(shù)
載荷變動(dòng)很小
液體攪拌機(jī)、通風(fēng)機(jī)和鼓風(fēng)機(jī)(7.5kW)、離心式水泵和壓縮機(jī)、輕負(fù)載輸送機(jī)
<10
1016
>16
<10
1016
>16
1.0
1.1
1.2
1.1
1.2
1.3
根據(jù), ,確定選用A型普通v帶
3.3 V帶線速度的檢驗(yàn)
m/s 合適 (3-5)
3.4 計(jì)算中心距及基準(zhǔn)長(zhǎng)度
初步選取中心距 (3-6)
取360mm符合0.7(D1+ D2)
iBLU Lp!i|M BunseAjeii epoiu ?。雨? 6u!p!Aaid joj euoq>|oeq s! ainpsijipje Sim S0SS9UJB4 6uu|m jo uo!pnp9J pue sAe|ej uo,!oi!|a ai|i ‘sesn“o jeqiunu am eonpej SJ01U9O j0Mod 9兩s-p!|0s Lji!M uo!!ounfuo3 u! pesn 'sjeea uiiop Xq pedo|ey\ep |sjs||ojituoo ,xoq xey, uo peseq s! ajeMpjei] ei|i sejijiiqedBO o!isou6e!p p9A0」duj! 9|q!jediuo3 JosjApy 90|AJ9S s! pue s|ooo!ojd NVO pjepue^s Aflsnpu! luejjno uo psseq s! ainp列ipje |eo!jp9|9 ei|j_
so!uono&i3 paseg
' Ae[ds;p jsodjaujoo _9 3jn6|j
Electronic Unit Synchronization
Currently, picking unit synchronization to ground speed is done via a mechanical link between the ground drive and unit drive hydrostatic pumps. Each machine requires adjustment as part of the manufacturing process. The 7760 program has developed the electronic unit speed synchronization system. This technology eliminates the synchronization adjustment in manufacturing and delivers synchronized unit speed at picking speeds up to 4.2 mph. The improved range of synchronization improves the picking efficiency of the machine. System calibrations provide for precise and accurate control of the picking unit speeds for the entire harvest range.
ProDrive? Automatic Shift Transmission
The 7760 also has a new electronic controlled 2-speed powershift transmission with automatic shifting and independent hydraulic wet disc brake design with an integrated spring applied, hydraulic released park brake. Increased tractive effort and higher loads will be carried through a high capacity four pinion differential with hydraulically actuated differential lock to more effectively and reliably transfer the power to the ground in adverse as well as normal conditions.
Electronic Controlled Variable Speed Hydrostatic Ground Drive
ProDrive? Automatic-ShiftTransmission (AST)
? Picking Mode 6.8 kph (4.2 mph)
? Scrapping Mode 8.1 kph (5.0 mph)
? Field Transport Mode 14.5 kph (9.0 mph)
? Road Transport Mode 27.4 kph (17.0 mph)
Power Module
The heart within the power module is a tier III emission certified 13.5L John Deere PowerTechPlus? engine rated at 373 kW (500 HP) @ 2100 RPM. Coupled to this powerplant is a direct drive pump drive gearbox which provides efficient transfer of power to the hydrostatic, hydraulic systems and cotton fans.
Walk-under Mainframe
The new mainframe design allows walk-under clearance into the power-module area to improve access into the engine compartment for daily service and maintenance.
Air System
In order to meet the increased cotton conveying demands due to increasing ground speed to 4.2 mph, twin high efficiency fans deliver improved air flow rates and consume less power.
Mechanical Rear Drive Axle
The on-board cotton handling/moduling system added nearly 20,000 lbs of weight to the rear axle compared to our current 9996 cotton harvester.
A new rear axle and tire size (see Figure 7) were developed to address higher vehicle weights (without increasing ground compaction), increased tractive effort requirements and increased maneuverability requirements.
Figure 7. Mechanical rear axle
By converting to larger radial constructed rear tires, ground compaction under the rear tires remains comparable to the 9996. The static loaded rolling radius increased 30% over the 9996.
The new rear axle is powered 100% of the time by an electronically controlled hydrostatic system. This system works in conjunction with the front axle hydrostatic system to provide increased rim pull while maintaining current transport speed. This translates into a machine that is better at climbing hills and is less prone to getting stuck in muddy conditions.
Improvements to turning radius over the 9996 cotton picker, in light of a 20% increase in vehicle wheelbase, are possible due to a 55-degree steer angle, a 34% increase in steer angle over the 9996. This results in improved vehicle maneuverability over the 9996 by actually reducing the vehicle turning radius by over 36%. This reduction allows the machine to turn back on the adjacent unpicked rows without requiring the use of power hydraulic brakes or making a three point turn, resulting in less structural stress, less power, and less time to make the turn.
Spec Comparison
Rear axle weight comparisons
9996= 18,000 lbs 7760 = 38,000 lbs 111% increase in rear axle weight Tread setting options
Same for both a 9996 and 7760 - 30,32,36,38 & 40 in Oscillation comparison 9996 = 8.3 deg 7760 = 9.0 deg
8.4% increase oscillation angle Wheel base comparison
9996= 141" (3.58m)
7760 = 170" (4.32m)
20.6% increase in wheel base Steer angle comparison 9996 = 41 deg 7760 = 55 deg
34.1 % increase in steer angle
Turning radius comparison (6 row heads require tighter turning radius to turn back on adjacent 6 rows)
9996 = 236” (5.99m)
7760 = 150”(3.81m)
36.4% reduction in turning radius
Ground compaction
Within 2-3 psi of 9996
Round Module Handling
Figure 9. Round Module Handler CM1100
Figure 8. Staging Round Modules
It was already mentioned that the round shape sheds water and the plastic wrap protects the fiber. Some other notable advantages of the round modules include water protection and reduced waste during moving. Notice how the cover-edge on the round module keeps the water away from the fiber (see Figure 10) when exposed to ponding rainfall. And when the round modules are moved, there’s typically less waste as well. Typical waste or cotton left behind in the field and gin yard when moving conventional modules (see Figure 11).
Once the cotton is harvested, the round modules are easily staged for conventional module truck pick-up (see Figure 8), moved to high ground if necessary, or loaded for transport. The Frontier Round Module Handler CM 1100,coupled to an 8000 series John Deere tractor, provides an effective solution to move, stage or load round modules (see Figure 9) and also provides the flexibility to do these operations when convenient and when circumstances and manpower allow.
11
Table 2: Machine Specifications
Figure 10. Round Modules in Standing Water
Figure 11. Waste from Conventional Modules
Module Transporting
The round modules provide additional flexibility for transporting seed cotton to the gin as either a traditional module truck (see Figure 12), with the chain bed modified slightly, or a standard flatbed trailer can be used (see Figure 13).
Figure 12. Conventional Module Truck Figure 13. Flatbed Trailers
Ginning
We’ve invested a tremendous amount of engineering time and energy to make sure that the round modules are uniform. Uniform in size, density and moisture. This uniformity has proven to be very beneficial to the ginning process. Ginning experts that hav