單級(jí)單吸清水離心泵設(shè)計(jì)
單級(jí)單吸清水離心泵設(shè)計(jì),單級(jí)單吸清水離心泵設(shè)計(jì),單級(jí)單吸,清水,離心泵,設(shè)計(jì)
單級(jí)單吸清水離心泵設(shè)計(jì) 第1章 緒論v離心泵是一種用量最大的水泵,在給水排水及農(nóng)業(yè)工程、固體顆粒液體輸送工程、石油及化學(xué)工業(yè)、航空航天和航海工程、能源工程和車輛工程等國(guó)民經(jīng)濟(jì)各個(gè)部門都有廣泛的應(yīng)用。v在此設(shè)計(jì)中,主要包括單級(jí)單吸清水離心泵的方案設(shè)計(jì),離心泵基本參數(shù)選擇、離心泵葉片的水力設(shè)計(jì)、離心泵壓水室的水利設(shè)計(jì)、離心泵吸水室的水利設(shè)計(jì)。以及進(jìn)行軸向力及徑向力的平衡,最后要進(jìn)行強(qiáng)度校核。v泵設(shè)計(jì)的最大難點(diǎn)就是泵的密封,本次設(shè)計(jì)采用的新式的填料密封,它可以根據(jù)壓力的改變來(lái)改變密封力的裝置。1.3 本課題研究的主要內(nèi)容v課題研究的內(nèi)容是單級(jí)單吸清水離心泵設(shè)計(jì)。主要包括單級(jí)單吸清水離心泵的方案設(shè)計(jì),離心泵基本參數(shù)選擇、離心泵葉片的水力設(shè)計(jì)、離心泵壓水室的水利設(shè)計(jì)、離心泵吸水室的水利設(shè)計(jì)。以及進(jìn)行軸向力及徑向力的平衡,最后要進(jìn)行強(qiáng)度校核。第第2章章 泵的基本知識(shí)泵的基本知識(shí) v離心泵的工作原理v離心泵之所以能把水送出去是由于離心力的作用。水泵在工作前,泵體和吸入管必須罐滿水形成真空狀態(tài),當(dāng)葉輪快速轉(zhuǎn)動(dòng)時(shí),葉片促使水快速旋轉(zhuǎn),旋轉(zhuǎn)著的水在離心力的作用下從葉輪中飛去,泵內(nèi)的水被拋出后,葉輪的中心部分形成真空區(qū)域。水源的水在大氣壓力(或水壓)的作用下通過(guò)管網(wǎng)壓到了吸入管內(nèi)。這樣循環(huán)不已,就可以實(shí)現(xiàn)連續(xù)抽水。在此值得一提的是:離心泵啟動(dòng)前一定要向泵殼內(nèi)充滿水以后,方可啟動(dòng),否則泵體將不能完成吸液,造成泵體發(fā)熱,振動(dòng),不出水,產(chǎn)生“空轉(zhuǎn)”,對(duì)水泵造成損壞(簡(jiǎn)稱“氣縛”)造成設(shè)備事故。具體見(jiàn)圖2-1。圖2-1 離心泵裝置簡(jiǎn)圖泵的分類泵的分類 v離心泵是一種量大面廣的機(jī)械設(shè)備。由于應(yīng)用場(chǎng)合、性能參數(shù)、輸送介質(zhì)和使用要求的不同,離心泵的品種及規(guī)格繁多,結(jié)構(gòu)形式多種多樣。第3章 離心泵的水力設(shè)計(jì)v泵的基本設(shè)計(jì)參數(shù)v1)揚(yáng)程H=35mv2)流量Q=15m3/hv3)工作介質(zhì)為清水v4)必要空化余量NPSHr=4mv5)工作介質(zhì)密度為=1000kg/m3軸的最小直徑 v泵軸轉(zhuǎn)速不高,輸送介質(zhì)的溫度壓力不高時(shí),用碳素鋼;v 泵軸轉(zhuǎn)速高,輸送介質(zhì)的溫度壓力高時(shí),選用機(jī)械強(qiáng)度比較高的合金鋼軸的材料選用3Cr13,許用切應(yīng)力=Pa,確定出泵的最小直徑后,參考類似結(jié)構(gòu)泵的泵軸,畫(huà)出軸的結(jié)構(gòu)草圖。見(jiàn)圖3-1圖3-1 軸的結(jié)構(gòu)草圖軸的軸向尺寸是是由軸上的零件決定的,主要零件有:葉輪、止動(dòng)墊圈、軸套、深溝球軸承,結(jié)構(gòu)圖見(jiàn)圖3-2。圖3-2 軸的結(jié)構(gòu)圖第第4章章 葉輪的水力設(shè)計(jì)葉輪的水力設(shè)計(jì) v葉輪尺寸的確定主要有速度系數(shù)發(fā)和相似換算法,在此次泵設(shè)計(jì)采用的是速度系數(shù)發(fā)。確定葉片厚度確定葉片厚度 葉片數(shù)葉片數(shù)Z的選擇與葉片包角的選擇與葉片包角 葉輪軸面投影圖的繪制葉輪軸面投影圖的繪制 圖4-1 葉輪軸面投影圖葉片繪型葉片繪型 v圓柱形葉片可直接在平面圖上繪型,葉片骨線可用一個(gè)圓弧或多個(gè)圓弧畫(huà)成,本次設(shè)計(jì)采用兩段圓弧。見(jiàn)圖4-2。圖4-2 葉片第第5章章 壓水室的水力設(shè)計(jì)壓水室的水力設(shè)計(jì) v壓水室的作用壓水室的作用 v1)將葉輪中流出的液體收集起來(lái)送往下一級(jí)葉輪或管路系統(tǒng);v2)降低液體的流速,實(shí)現(xiàn)動(dòng)能到壓能的轉(zhuǎn)化,并可減小液體往下一級(jí)葉輪或管路系統(tǒng)中的損失。v3)消除液體流出葉輪后的旋轉(zhuǎn)運(yùn)動(dòng),以避免由于這種旋轉(zhuǎn)運(yùn)動(dòng)那個(gè)帶來(lái)的水力損失。隔舌起始角 蝸形體的繪型 圖5-1 梯形斷面圖5-2 蝸型體平面圖第第6章章 吸水室的設(shè)計(jì)吸水室的設(shè)計(jì) v 吸水室尺寸確定吸水室尺寸確定v按照吸水室的形狀可分為錐管吸水室、環(huán)形吸水室按照吸水室的形狀可分為錐管吸水室、環(huán)形吸水室和辦螺旋形吸水室三種。本次吸水室采用錐管吸水和辦螺旋形吸水室三種。本次吸水室采用錐管吸水室,如圖錐管吸水室廣泛用于單級(jí)懸臂離心泵上,室,如圖錐管吸水室廣泛用于單級(jí)懸臂離心泵上,其水力性能好,結(jié)構(gòu)簡(jiǎn)單,速度分布從進(jìn)口到水泵其水力性能好,結(jié)構(gòu)簡(jiǎn)單,速度分布從進(jìn)口到水泵葉輪進(jìn)口逐步均勻變化,其出口直徑與進(jìn)口直徑相葉輪進(jìn)口逐步均勻變化,其出口直徑與進(jìn)口直徑相同,入口直徑比出口直徑大同,入口直徑比出口直徑大7%10%,而入口的經(jīng),而入口的經(jīng)濟(jì)流速在濟(jì)流速在3m/s左右,允許錐度為,這樣就可以確定左右,允許錐度為,這樣就可以確定該吸水室的尺寸。該吸水室的尺寸。圖6-1 吸水室第7章 徑向力軸向力及其平衡v軸向力的平衡 圖7-1 平衡孔第第8章章 泵零件選擇及強(qiáng)度計(jì)算泵零件選擇及強(qiáng)度計(jì)算 v軸的強(qiáng)度校核軸的強(qiáng)度校核 圖8-1 彎矩圖及扭矩圖鍵的強(qiáng)度計(jì)算鍵的強(qiáng)度計(jì)算 v根據(jù)葉輪處直徑選擇鍵為標(biāo)準(zhǔn)圓頭普通平鍵(A),鍵的寬度b=0.008m,鍵的高度h=0.008m,鍵的總長(zhǎng)L=0.025m。結(jié)構(gòu)形式見(jiàn)圖8-2.圖8-2 鍵的結(jié)構(gòu)圖軸承和聯(lián)軸器的選擇軸承和聯(lián)軸器的選擇 圖8-3 6009型深溝球軸承根據(jù)泵結(jié)構(gòu)以及參考其他類型的結(jié)構(gòu),選軸承為:深溝球軸承6009型,兩個(gè)軸承成對(duì)使用,具體結(jié)構(gòu)見(jiàn)圖8-3。第第9章章 泵體的厚度計(jì)算泵體的厚度計(jì)算 v蝸殼的幾何形狀很復(fù)雜的,而且受力后產(chǎn)生的應(yīng)力更復(fù)雜,因此很難用精確計(jì)算的方法求出壁厚,可用如下的經(jīng)驗(yàn)公式10-625進(jìn)行計(jì)算。v泵的Q=35m,H=15m,n=2930r/min,蝸殼的材料HT200,kg/m2,安全系數(shù)n=4。第第10章章 泵的軸封泵的軸封 v填料密封的結(jié)構(gòu)改造填料密封的結(jié)構(gòu)改造 1 軸 2 泵蓋 3 軸封腔套 4 填料 5 壓蓋 6 彈簧 7 調(diào)節(jié)螺母 8 軸封腔套螺栓圖10-1 填料密封v感謝聆聽(tīng)!
齊 齊 哈 爾 工 程 學(xué) 院
畢業(yè)設(shè)計(jì)(論文)
題 目 單級(jí)單吸清水離心泵設(shè)計(jì)
院 (系)
專業(yè)班級(jí)
學(xué)生姓名
指導(dǎo)教師
成 績(jī)
年 月 日
齊齊哈爾工程學(xué)院畢業(yè)設(shè)計(jì)(論文)
單級(jí)單吸清水離心泵設(shè)計(jì)
摘要
離心泵是一種用量最大的水泵,在給水排水及農(nóng)業(yè)工程、固體顆粒液體輸送工程、石油及化學(xué)工業(yè)、航空航天和航海工程、能源工程和車輛工程等國(guó)民經(jīng)濟(jì)各個(gè)部門都有廣泛的應(yīng)用。
在此設(shè)計(jì)中,主要包括單級(jí)單吸清水離心泵的方案設(shè)計(jì),離心泵基本參數(shù)選擇、離心泵葉片的水力設(shè)計(jì)、離心泵壓水室的水利設(shè)計(jì)、離心泵吸水室的水利設(shè)計(jì)。以及進(jìn)行軸向力及徑向力的平衡,最后要進(jìn)行強(qiáng)度校核。
泵設(shè)計(jì)的最大難點(diǎn)就是泵的密封,本次設(shè)計(jì)采用的新式的填料密封,它可以根據(jù)壓力的改變來(lái)改變密封力的裝置。
關(guān)鍵詞:離心泵;葉片;壓水室;吸水室
II
Abstract
Centrifugal pump is a kind of the most consumable in pumps, water drainage and in agricultural engineering, solid particles liquid transportation engineering, oil and chemical industry, aerospace and Marine engineering, energy engineering and vehicle engineering, etc all departments of national economy is widely used.
In this design, including single-stage single-suction clean water centrifugal pump design, the basic parameters centrifugal pump, centrifugal pump hydraulic design of leaves, water pump pressurized water chamber design, the water pump suction chamber design. As well as axial force and radial force balance, and finally to the strength check.
The biggest difficulty pump design is the design of the pump seal, the new packing seal it can according to the change of the pressure to change the device sealing force.
Keywords:Centrifugal pump;Leaves; Pressurized water chamber; Suction chamber
目錄
摘要 I
Abstract II
第1章 緒論 1
1.1 選此課題的意義 1
1.2 本課題的研究現(xiàn)狀 2
1.3 本課題研究的主要內(nèi)容 2
第2章 泵的基本知識(shí) 4
2.1 泵的功能 4
2.2 泵的概述 4
2.2.1 離心泵的主要部件 4
2.2.2 離心泵的工作原理 4
2.3 泵的分類 5
第3章 離心泵的水力設(shè)計(jì) 6
3.1 泵的基本設(shè)計(jì)參數(shù) 6
3.2 泵的比轉(zhuǎn)速計(jì)算 6
3.3 泵進(jìn)口及出口直徑的計(jì)算 6
3.4 計(jì)算空化比轉(zhuǎn)速 7
3.5 泵的效率計(jì)算 7
3.5.1 水力效率 7
3.5.2 容積效率 8
3.5.3 機(jī)械效率 8
3.5.4 離心泵的總效率 9
3.6 軸功率的計(jì)算和原動(dòng)機(jī)的選擇 9
3.6.1 計(jì)算軸功率 9
3.6.2 確定泵的計(jì)算功率 10
3.6.3 原動(dòng)機(jī)的選擇 10
3.7 軸徑與輪轂直徑的初步計(jì)算 10
3.7.1 軸的最小直徑 10
3.7.2 輪轂直徑的計(jì)算 11
3.8 泵的結(jié)構(gòu)型式的選擇 12
第4章 葉輪的水力設(shè)計(jì) 13
4.1 確定葉輪進(jìn)口速度 13
4.2 計(jì)算葉輪進(jìn)口直徑 13
4.2.1 先求葉輪進(jìn)口的有效直徑 13
4.2.2 葉輪進(jìn)口直徑 14
4.3 確定葉輪出口直徑 14
4.4 確定葉片厚度 14
4.5 葉片出口角的確定 15
4.6 葉片數(shù)Z的選擇與葉片包角 15
4.7 葉輪出口寬度 16
4.8 葉輪出口直徑及葉片出口安放角的精確計(jì)算 16
4.9 葉輪軸面投影圖的繪制 17
4.10 葉片繪型 18
第5章 壓水室的水力設(shè)計(jì) 21
5.1 壓水室的作用 21
5.2 蝸型體的計(jì)算 21
5.2.1 基圓直徑的確定 21
5.2.2 蝸型體進(jìn)口寬度計(jì)算 22
5.2.3 舌角 22
5.2.4 隔舌起始角 22
5.2.5 蝸形體各斷面面積的計(jì)算 22
5.2.6 擴(kuò)散管的計(jì)算 23
5.2.7 蝸形體的繪型 23
第6章 吸水室的設(shè)計(jì) 26
第7章 徑向力軸向力及其平衡 27
7.1 徑向力及平衡 27
7.1.1 徑向力的產(chǎn)生 27
7.1.2 徑向力的計(jì)算 27
7.1.3 徑向力的平衡 27
7.2 軸向力及平衡 28
7.2.1 軸向力的產(chǎn)生 28
7.2.2 軸向力計(jì)算 28
7.2.3 軸向力的平衡 29
第8章 泵零件選擇及強(qiáng)度計(jì)算 30
8.1 葉輪蓋板的強(qiáng)度計(jì)算 30
8.2 葉輪輪轂的強(qiáng)度計(jì)算 30
8.3 葉輪配合的選擇 31
8.4 輪轂熱裝溫度計(jì)算 32
8.5 軸的強(qiáng)度校核 32
8.6 鍵的強(qiáng)度計(jì)算 34
8.6.1 工作面上的擠壓應(yīng)力 34
8.6.2 切應(yīng)力 35
8.7 軸承和聯(lián)軸器的選擇 35
第9章 泵體的厚度計(jì)算 37
9.1 蝸殼厚度的計(jì)算 37
9.2 中段壁厚的計(jì)算 37
第10章 泵的軸封 38
10.1 常用的軸封種類及設(shè)計(jì)要求 38
10.2 填料密封的工作原理 38
10.3 傳統(tǒng)填料密封結(jié)構(gòu)及其缺陷 39
10.3.1 傳統(tǒng)填料密封結(jié)構(gòu) 39
10.3.2 傳統(tǒng)填料密封的不足 39
10.4 填料密封的結(jié)構(gòu)改造 39
10.4.1 葉輪密封 40
10.4.2 泵體密封 40
第11 章 經(jīng)濟(jì)性分析 41
結(jié) 論 42
參考文獻(xiàn) 43
致 謝 45
38
第1章 緒論
1.1 選此課題的意義
泵是一種將原動(dòng)機(jī)的機(jī)械能轉(zhuǎn)變?yōu)檩斔土黧w能量的機(jī)械。在任何工礦企業(yè)中,用不到離心泵的部門是沒(méi)有的.在農(nóng)業(yè)生產(chǎn)中,泵是主要的排灌機(jī)械。我國(guó)農(nóng)用泵占泵總量的一半以上。在礦業(yè)和冶金工業(yè)中,泵也是使用得最多的設(shè)備。礦井下需要用泵排水;在選礦、冶煉和軋制過(guò)程中,需要用泵來(lái)供水等。另外,在國(guó)防建設(shè)、船舶制造、城市的給排水、蒸汽機(jī)車的用水、機(jī)床的潤(rùn)滑和冷卻、紡織工業(yè)中輸送漂液和染料、造紙工業(yè)中輸送紙漿,以及食品工業(yè)中輸送牛奶和糖類食品等,都需要大量的泵。
泵的設(shè)計(jì)具有不同的方法,其基于流道理論的一元分析常用于離心式機(jī)械,將流道橫截面上的參數(shù)用其平均值來(lái)表示的一種簡(jiǎn)化分析方法。確定泵葉輪的線性尺寸可以采用不同的方法,一種是利用經(jīng)驗(yàn)系數(shù)直接計(jì)算線性尺寸,另一種利用速度系數(shù)。利用相似理論推導(dǎo)出葉輪及蝸形壓出室線性尺寸計(jì)算公式,再以當(dāng)代國(guó)產(chǎn)泵優(yōu)秀水力模型為統(tǒng)計(jì)源,用數(shù)值分析的方法將擬合成方程式進(jìn)行計(jì)算,是離心泵水力設(shè)計(jì)行之有效而簡(jiǎn)潔的方法。
基于泵內(nèi)液體流動(dòng)的復(fù)雜性,至今還不能用理論計(jì)算的方法準(zhǔn)確地獲得泵的性能曲線,因此,通過(guò)試驗(yàn)手段開(kāi)展對(duì)泵性能的研究,或?qū)σ延械漠a(chǎn)品確定其實(shí)際的工作性能就顯得極為重要。根據(jù)試驗(yàn)條件和目的的不同,性能試驗(yàn)可分為試驗(yàn)臺(tái)試驗(yàn)和現(xiàn)場(chǎng)式試驗(yàn)兩種。試驗(yàn)臺(tái)試驗(yàn)是指,將泵安裝在制造廠或使用單位的泵性能試驗(yàn)裝置上而進(jìn)行的試驗(yàn)。其主要目的是:確定泵的工作性能曲線,確定它的工作范圍,可以更好的向用戶提供經(jīng)濟(jì)、合理地使用和選擇的可靠數(shù)據(jù);通過(guò)實(shí)驗(yàn)得到的性能曲線來(lái)校核設(shè)計(jì)參數(shù),檢驗(yàn)是否達(dá)到了設(shè)計(jì)所要求的技術(shù)指標(biāo),以便修改設(shè)計(jì)或改進(jìn)制造質(zhì)量。現(xiàn)場(chǎng)試驗(yàn)是指,泵安裝到使用單位后,在實(shí)際的使用條件下進(jìn)行的試驗(yàn),其主要目的是為泵的安全、經(jīng)濟(jì)運(yùn)行提供可靠的依據(jù)。例如,通過(guò)試驗(yàn)了解整個(gè)泵裝置及管路系統(tǒng)的實(shí)際性能,據(jù)此來(lái)考察其選型是否合理,并以此為依據(jù),制定經(jīng)濟(jì)運(yùn)行方案,使其在負(fù)荷變動(dòng)時(shí)也能隨之按最經(jīng)濟(jì)合理的方式進(jìn)行。在泵改造前進(jìn)行試驗(yàn),以便鑒定改進(jìn)效果。通過(guò)試驗(yàn)測(cè)得的效率下降和出力變化的情況,來(lái)估計(jì)泵在長(zhǎng)期運(yùn)行中因汽化、磨損和內(nèi)部不正常的泄露等因素所造成的內(nèi)部損壞程度,以便及時(shí)檢測(cè)并合理確定檢修期限。
而離心泵是各種水力機(jī)械中應(yīng)用最廣泛的一種,是日常生活和生產(chǎn)活動(dòng)聯(lián)系最緊密的一種機(jī)械,在給水排水及農(nóng)業(yè)工程、固體顆粒、液體輸送工程、石油及化學(xué)工業(yè)、航空航天和航海工程、能源工程和車輛工程等國(guó)民經(jīng)濟(jì)各個(gè)部門都有廣泛的應(yīng)用。
本次課題設(shè)計(jì)的清水離心泵適用工業(yè)和城市給水、排水,亦可用于農(nóng)業(yè)排灌,供輸送清水或物理化學(xué)性質(zhì)類似清水的其他液體之用,溫度不高于80。C。
IS系列清水泵屬于單級(jí)單吸的軸向吸入性離心泵,是供輸送清水或物理化學(xué)性質(zhì)類似于水的其它液體之用,運(yùn)送介質(zhì)溫度不高于80℃。其廣泛運(yùn)用于給水排水及農(nóng)業(yè)工程、石油及化學(xué)工業(yè)、航空航天和航海工程、能源工程和車輛工程等各個(gè)領(lǐng)域中。泵是通用類產(chǎn)品,其中的單級(jí)單吸清水泵屬泵類中量大面廣的一類泵,目前共有29個(gè)IS系列的泵產(chǎn)品。長(zhǎng)期以來(lái),單級(jí)單吸清水泵生產(chǎn)需求量占泵市場(chǎng)的30%以上。我國(guó)的清水泵行業(yè)發(fā)展已有60多年歷史,在這期間,一方面泵本身技術(shù)在進(jìn)步,另一方面國(guó)民經(jīng)濟(jì)各部門對(duì)泵不斷提出更多更高的要求?,F(xiàn)在看來(lái),現(xiàn)有單級(jí)泵的性能與可靠性已難以滿足國(guó)家的需要,尤其是泵的效率與現(xiàn)代的高效節(jié)能產(chǎn)品相比存在著很大的差距。?
隨著工業(yè)生產(chǎn)和科學(xué)技術(shù)的快速發(fā)展,清水泵行業(yè)的技術(shù)發(fā)展將呈現(xiàn)以下趨勢(shì):1.高效、環(huán)保、節(jié)能;2.嚴(yán)格執(zhí)行國(guó)際相關(guān)標(biāo)準(zhǔn);3.向高速化、自動(dòng)化方向發(fā)展。由此可見(jiàn),發(fā)展單級(jí)單吸清水泵產(chǎn)品,不僅是泵行業(yè)抓機(jī)遇,進(jìn)行產(chǎn)品結(jié)構(gòu)調(diào)整、升級(jí)換代的一項(xiàng)重要工作,同時(shí)也具有十分顯著的社會(huì)與經(jīng)濟(jì)效益。?
本設(shè)計(jì)對(duì)單級(jí)單吸清水泵進(jìn)行結(jié)構(gòu)設(shè)計(jì)、鍛煉自主思考的能力、查閱資料解決問(wèn)題的能力、手工及電腦制圖的能力,為以后學(xué)習(xí)工作打下良好基礎(chǔ)。?
1.2 本課題的研究現(xiàn)狀
當(dāng)前國(guó)內(nèi)離心泵的技術(shù)水平通過(guò)幾十年的發(fā)展以及許可證技術(shù)引進(jìn),從綜合技術(shù)水平來(lái)看,單、兩級(jí)泵方面都具有國(guó)際先進(jìn)水平,與國(guó)外同類型泵相比無(wú)差距,有些地方還是國(guó)際一流水平,如可靠性、效率、通化程度等。而高溫高壓多級(jí)泵在結(jié)構(gòu)形式、可靠方面已達(dá)到國(guó)際同類型水平,國(guó)內(nèi)起步較晚,引進(jìn)技術(shù)消化吸收,從89年,90年開(kāi)始生產(chǎn)高技術(shù)水平泵,逐步開(kāi)發(fā)完善,并代替進(jìn)口。
國(guó)外離心泵總體技術(shù)水平比國(guó)內(nèi)技術(shù)水平要高一些,效率合格率為85.7%,總體平均水平與國(guó)家標(biāo)準(zhǔn)規(guī)定值相比高2.30%,達(dá)到國(guó)家標(biāo)準(zhǔn)要求,效率、汽蝕余量合格率分布情況總體與國(guó)內(nèi)的情況是相一致的,在低比轉(zhuǎn)速處合格品分布率相對(duì)好一些。
1.3 本課題研究的主要內(nèi)容
課題研究的內(nèi)容是單級(jí)單吸清水離心泵設(shè)計(jì)。主要包括單級(jí)單吸清水離心泵的方案設(shè)計(jì),離心泵基本參數(shù)選擇、離心泵葉片的水力設(shè)計(jì)、離心泵壓水室的水利設(shè)計(jì)、離心泵吸水室的水利設(shè)計(jì)。以及進(jìn)行軸向力及徑向力的平衡,最后要進(jìn)行強(qiáng)度校核。
進(jìn)行離心泵設(shè)計(jì)的難點(diǎn)就是密封設(shè)計(jì),本次課題設(shè)計(jì)的離心泵密封類型是填料密封,填料密封是用填料填塞泄露通道阻止泄露的一種密封形式。其不足之處在于密封性能較差,對(duì)軸或軸套磨損大,損失功率大以及使用壽命短等。
通過(guò)分析傳統(tǒng)填料密封結(jié)構(gòu)、工作原理及其缺陷后,要改善和提高填料密封的密封效果,可采取的措施是:
(1) 盡量使徑向壓緊力均勻且與泄露壓力規(guī)律一致,使軸套承壓面受壓均勻,從而使軸套磨損小而且均勻。
(2)使填料密封結(jié)構(gòu)中的填料具有補(bǔ)償能力、足夠的潤(rùn)滑性和彈性。
(3)密封的填料沿軸向抱緊力應(yīng)均勻分布。
鑒于以上分析,采用的填料密封結(jié)構(gòu)應(yīng)該是一種能夠自動(dòng)根據(jù)被密封介質(zhì)壓力的變化而變化密封力的填料密封結(jié)構(gòu)。
第2章 泵的基本知識(shí)
2.1 泵的功能
泵是各種水力機(jī)械中應(yīng)用最廣泛的一種,是和我們?nèi)粘I詈蜕a(chǎn)活動(dòng)聯(lián)系最緊密的一種機(jī)械。在給水排水及農(nóng)業(yè)工程上都需要它,在工業(yè)工程上更需要它。如在給水排水工程中,泵從水源取水,抽送到水廠,凈化后的清水由送水泵輸送到城市管理網(wǎng)中去;對(duì)于城市的生活污水和工業(yè)廢水,經(jīng)排水管渠系統(tǒng)匯集后,也必須有排水泵將污水抽送到污水處理廠,經(jīng)處理后的污水再由另外排水泵排放如江河湖海中去,或者排入農(nóng)田作為灌溉之用;再礦山輸送尾礦的尾礦泵、洗煤廠使用的泥漿泵、電站除灰的灰渣泵和河道疏浚的挖泥泵等,已經(jīng)廣泛應(yīng)用于冶金、石化、食品等工業(yè)和污水處理、港口河道疏浚等作業(yè)中。
2.2 泵的概述
2.2.1 離心泵的主要部件
離心泵主要由葉輪、軸、泵殼、軸承、密封裝置等組成,具體介紹如下:
1)葉輪:葉輪是離心泵主要的過(guò)流部件,其主要作用是把原動(dòng)機(jī)的能量傳遞給液體,葉輪 常用鑄鐵、鑄鋼、合金鋼或其他材料制成。
2)軸:離心泵的軸用來(lái)傳遞扭矩,驅(qū)動(dòng)葉輪旋轉(zhuǎn),在軸上泵的葉輪、軸承、密封裝置及聯(lián)軸節(jié)等部件。
3)泵殼:將葉輪封閉在一定的空間,以便由葉輪的作用吸入和壓出液體。泵殼多做成蝸殼形,故又稱蝸殼。由于截面積逐漸擴(kuò)大,故從葉輪四周甩出的高速液體逐漸降低流速,使部分動(dòng)能有效地轉(zhuǎn)換為靜壓能。泵殼不僅匯集由葉輪甩出的液體,同時(shí)又是一種能量轉(zhuǎn)換裝置。
4)軸承:軸承用來(lái)支撐轉(zhuǎn)子零件,并承受轉(zhuǎn)子零件上的多種載荷,根據(jù)軸承中摩擦性質(zhì)的不同可分為滑動(dòng)軸承和滾動(dòng)軸承,每一種又可分為向心軸承和推力軸承。
5)密封裝置:為了保泵的正常工作,應(yīng)防止液體外露和內(nèi)漏,或外界空氣吸入泵內(nèi),因此必須在葉輪和泵殼間、軸與殼體間裝有密封裝置,最常見(jiàn)的密封裝置由填料密封、機(jī)械密封盒浮動(dòng)密封。
2.2.2 離心泵的工作原理
離心泵之所以能把水送出去是由于離心力的作用。水泵在工作前,泵體和吸入管必須罐滿水形成真空狀態(tài),當(dāng)葉輪快速轉(zhuǎn)動(dòng)時(shí),葉片促使水快速旋轉(zhuǎn),旋轉(zhuǎn)著的水在離心力的作用下從葉輪中飛去,泵內(nèi)的水被拋出后,葉輪的中心部分形成真空區(qū)域。水源的水在大氣壓力(或水壓)的作用下通過(guò)管網(wǎng)壓到了吸入管內(nèi)。這樣循環(huán)不已,就可以實(shí)現(xiàn)連續(xù)抽水。在此值得一提的是:離心泵啟動(dòng)前一定要向泵殼內(nèi)充滿水以后,方可啟動(dòng),否則泵體將不能完成吸液,造成泵體發(fā)熱,振動(dòng),不出水,產(chǎn)生“空轉(zhuǎn)”,對(duì)水泵造成損壞(簡(jiǎn)稱“氣縛”)造成設(shè)備事故。具體見(jiàn)圖2-1。
圖2-1 離心泵裝置簡(jiǎn)圖
2.3 泵的分類
離心泵是一種量大面廣的機(jī)械設(shè)備。由于應(yīng)用場(chǎng)合、性能參數(shù)、輸送介質(zhì)和使用要求的不同,離心泵的品種及規(guī)格繁多,結(jié)構(gòu)形式多種多樣。
按泵軸的工作位置可分為橫軸泵和立軸泵:按壓出室形式可分為蝸殼式泵和導(dǎo)葉式泵;按吸入方式可分為單吸泵和雙吸泵;或按葉輪個(gè)數(shù)分為單機(jī)泵和多級(jí)泵。每一臺(tái)泵都可在上述各分類中找到自己所隸屬的結(jié)構(gòu)類型。泵的結(jié)構(gòu)形式是由幾個(gè)描述該泵結(jié)構(gòu)類型的屬于來(lái)命名的,如橫軸單級(jí)單吸蝸殼式離心泵、立軸多級(jí)導(dǎo)葉式離心泵等。
第3章 離心泵的水力設(shè)計(jì)
3.1 泵的基本設(shè)計(jì)參數(shù)
1)揚(yáng)程H=35m
2)流量Q=15m3/h
3)工作介質(zhì)為清水
4)必要空化余量NPSHr=4m
5)工作介質(zhì)密度為=1000kg/m3
3.2 泵的比轉(zhuǎn)速計(jì)算
對(duì)于本次離心泵設(shè)計(jì),必需空化余量為4m,轉(zhuǎn)速為2950r/min,比轉(zhuǎn)速可根據(jù)式3-13[4]來(lái)計(jì)算
ns===48.3 (3-1)
通過(guò)計(jì)算確定泵的比轉(zhuǎn)速ns=48.3
3.3 泵進(jìn)口及出口直徑的計(jì)算
泵吸入口徑由合理的進(jìn)口流速確定。泵吸入口的流速一般設(shè)為/s左右。從制造方便考慮,大型泵流速取大些,以減小泵的體積,提高過(guò)流能力。而要提高泵的抗汽蝕性能,應(yīng)減少吸入流速[3]。泵的進(jìn)口直徑D1由進(jìn)口速度vs確定,其值通過(guò)查表5-1[4]確定為3m/s左右,選vs=2.1m/s,進(jìn)口直徑按式5-1[4]計(jì)算
D1===0.0503m (3-2)
泵出口直徑D2可取與D1相同,或小于D1,即
D2=(1~0.7)D1=(1~0.7)50.3=50.3~35.2mm (3-3)
經(jīng)圓整取D1=50mm,D2=35mm。
3.4 計(jì)算空化比轉(zhuǎn)速
空化比轉(zhuǎn)速可由式5-2[4]計(jì)算
C===378.4 (3-4)
式中NPSHr為泵的必要空話余量,由于轉(zhuǎn)速已經(jīng)給定,在這里就不對(duì)轉(zhuǎn)速進(jìn)行過(guò)多的計(jì)算。
3.5 泵的效率計(jì)算
3.5.1 水力效率
水利管道上的主要用泵從用途上可分為給水泵和主輸泵兩種。主輸泵是各泵站的輸水用泵。在構(gòu)造上,水利管道所用離心泵一般為單級(jí)雙吸,兩級(jí)雙吸,多級(jí)單吸幾種。單級(jí)泵用作給水泵或串聯(lián)操作的主輸泵。多級(jí)泵則用于主輸泵的并聯(lián)操作,根據(jù)需要的揚(yáng)程選擇多級(jí)泵的級(jí)數(shù)。因?yàn)橐筝^高的工作效率,主泵的比轉(zhuǎn)數(shù)都比較高,因而水泵必需的最小汽蝕余量也大,這意味著,主泵的抗汽蝕性能較差,往往需要正壓進(jìn)泵。
離心泵基本工作性能特點(diǎn)[5]:
① 轉(zhuǎn)速高,通常為1500r/m~3000r/m或更高,流量均勻;
② 流量隨揚(yáng)程而變化,流量范圍大,通常10~350 m3/h,最大流量可達(dá)10000 m3/h以上;
③ 揚(yáng)程隨流量而變化,在一定流量下只能供給一定揚(yáng)程。單級(jí)揚(yáng)程一般10m~80m。多級(jí)泵揚(yáng)程可達(dá)300m以上,工作壓力一般10×105Pa;
④ 功率范圍很大,一般在500kw以內(nèi),最大可達(dá)1000kw以上;
⑤ 效率較高,一般0.50~0.90,在額定流量下效率最高,隨著流量變化效率降
⑥ 單級(jí)揚(yáng)程一般為5~7m,最大可達(dá)8m以上。
比轉(zhuǎn)數(shù)(比速)是影響離心泵葉輪結(jié)構(gòu)和性能的一個(gè)參數(shù)。
① 在~250的范圍,泵的效率最好,當(dāng)<60 時(shí),泵的效率顯著下降;
② 采用單吸葉輪過(guò)大時(shí),可考慮改用雙吸,反之采用雙吸過(guò)小時(shí),可考慮改用單吸葉輪;
水力效率按式2-35[4]計(jì)算
=1+0.0835lg=0.837 (3-5)
3.5.2 容積效率
輸入水力功率用來(lái)對(duì)通過(guò)葉輪的流體做功,因而葉輪出口處流體的壓力高于進(jìn)口壓力。由于泵中轉(zhuǎn)動(dòng)部件與靜止部件之間存在間隙,因而當(dāng)葉輪旋轉(zhuǎn)時(shí),必然有一部分流體從高壓側(cè)通過(guò)間隙流向低壓側(cè)。這樣,通過(guò)葉輪的流量(理論流量)并沒(méi)有完全輸送到出口,其中泄露量這部分液體把從葉輪中獲得的能量消耗與泄露的流動(dòng)過(guò)程中,把由泄露造成的損失稱為容積損失,其大小用容積效率來(lái)衡量。容積損失主要發(fā)生在密封環(huán)處、平衡軸向力裝置處、密封裝置處。對(duì)于多級(jí)泵來(lái)說(shuō)還有級(jí)間泄露。需要說(shuō)明的是,在泵的流量變小時(shí),其泄露量的相對(duì)值要增大。所以對(duì)于小流量高壓頭的泵,應(yīng)盡量減少泄露量,提高容積效率。容積損失和比轉(zhuǎn)速有關(guān),隨著比轉(zhuǎn)速的增大,容積損失逐漸減少。一般情況下,在所有比轉(zhuǎn)速范圍內(nèi),容積損失等于所有圓盤(pán)摩擦損失的一半。
容積效率按式2-43[4]計(jì)算
==0.951 (3-6)
考慮葉輪密封環(huán)處的泄露損失,級(jí)間泄露損失等取。
3.5.3 機(jī)械效率
原動(dòng)機(jī)傳到泵軸上的功率,首先要花費(fèi)一部分去克服軸承和軸封的摩擦損失,然后還要花費(fèi)一部分去克服葉輪前后蓋板外側(cè)與流體間的圓盤(pán)摩擦損失。在上述三種損失中,圓盤(pán)摩擦損失占的比重最大,而軸承和軸封的損失一般認(rèn)為與泵的尺寸無(wú)關(guān),只與零件表面加工質(zhì)量、軸封結(jié)構(gòu)等因素有關(guān),約占軸功率的1%~4%。上述三種損失功率之和稱為機(jī)械損失,其大小用機(jī)械效率來(lái)衡量。
機(jī)械效率按式2-47[4]計(jì)算
==0.862 (3-7)
3.5.4 離心泵的總效率
泵的總效率就等于其機(jī)械效率、容積效率和水力效率三者之乘積。因此,要想提高泵的效率就必須在設(shè)計(jì)、制造及運(yùn)行等各個(gè)方面注意減少各種損失。目前,離心泵的總效率視其大小、型式和結(jié)構(gòu)不同一般為0.55~0.90.在設(shè)計(jì)之前只能按統(tǒng)計(jì)資料(經(jīng)驗(yàn)公式或曲線)或類似的實(shí)際產(chǎn)品大致確定欲設(shè)計(jì)泵的效率,待設(shè)計(jì)完之后,可以近似估算所設(shè)計(jì)泵的效率,只有在泵制造完成之后,通過(guò)試驗(yàn)才能精確地確定其效率[5]。
(3-8)
3.6 軸功率的計(jì)算和原動(dòng)機(jī)的選擇
3.6.1 計(jì)算軸功率
在選取了泵的總效率以后,按式4-1[5]計(jì)算軸功率
P===7.5 kW (3-9)
式中 Q——泵的流量(m3/s);
H——泵的揚(yáng)程(m);
——抽送液體的密度(kg/m3)。
Ht= m (3-10) Qt= m3/s (3-11)
式中 Ht——理論揚(yáng)程(m);
Qt——理論流量(m3/s)。
3.6.2 確定泵的計(jì)算功率
泵的計(jì)算功率按式4-2[5]計(jì)算
kW (3-12)
式中 K1——水泵揚(yáng)程允差系數(shù),K1=1.05~1.1;
K2——水泵的流量的增大系數(shù),K2=1.1。
原動(dòng)機(jī)功率根據(jù)計(jì)算功率Pj選取。
3.6.3 原動(dòng)機(jī)的選擇
根據(jù)以上計(jì)算結(jié)果(Pj=9.075kW),選取Y160M1-2型電動(dòng)機(jī),功率P為11kW,轉(zhuǎn)速2930r/min。
3.7 軸徑與輪轂直徑的初步計(jì)算
3.7.1 軸的最小直徑
dmin=m (3-13)
根據(jù)泵軸工作特點(diǎn)和承受的應(yīng)力,在材料選擇上應(yīng)考慮使用耐疲勞強(qiáng)度比較好的碳素鋼,合金鋼,這些材料的綜合性能都比較好。
1) 泵軸轉(zhuǎn)速不高,輸送介質(zhì)的溫度壓力不高時(shí),用碳素鋼;
泵軸轉(zhuǎn)速高,輸送介質(zhì)的溫度壓力高時(shí),選用機(jī)械強(qiáng)度比較高的合金鋼軸的材料選用3Cr13,許用切應(yīng)力[]=Pa,確定出泵的最小直徑后,參考類似結(jié)構(gòu)泵的泵軸,畫(huà)出軸的結(jié)構(gòu)草圖。見(jiàn)圖3-1
圖3-1 軸的結(jié)構(gòu)草圖
軸的軸向尺寸是是由軸上的零件決定的,主要零件有:葉輪、止動(dòng)墊圈、軸套、深溝球軸承,結(jié)構(gòu)圖見(jiàn)圖3-2。
圖3-2 軸的結(jié)構(gòu)圖
3.7.2 輪轂直徑的計(jì)算
本次設(shè)計(jì)的是單機(jī)泵,單機(jī)泵葉輪處得軸徑dy等于聯(lián)軸器內(nèi)的軸徑dmin。葉輪輪轂直徑dh必須保證軸孔開(kāi)了鍵槽之后還有一定的厚度,使輪轂具有足夠的強(qiáng)度,直徑按式4-3[5]計(jì)算,即
dh= (3-14)
由于單級(jí)泵葉輪輪轂一般不通過(guò)葉輪進(jìn)口,因此取
dh=(1.4~2)dmin (3-15)
取dh=1.5dmin=46.95取整dh=45mm。
3.8 泵的結(jié)構(gòu)型式的選擇
此次設(shè)計(jì)的離心泵是懸架式懸臂泵,即一臺(tái)單級(jí)單吸橫軸離心泵,它由泵體、葉輪螺母、密封環(huán)、葉輪、泵蓋、軸套、密封裝置、懸架、泵軸支架組成,其泵腳與泵體鑄成一體,軸承置于懸臂安裝在泵體上的懸架內(nèi),整臺(tái)泵的質(zhì)量主要由泵體承受。
第4章 葉輪的水力設(shè)計(jì)
葉輪尺寸的確定主要有速度系數(shù)發(fā)和相似換算法,在此次泵設(shè)計(jì)采用的是速度系數(shù)發(fā)。
4.1 確定葉輪進(jìn)口速度
葉輪的進(jìn)口速度安式5-12[5]計(jì)算
m/s (4-1)
式中 ——葉輪進(jìn)口速度習(xí)俗,根據(jù)比轉(zhuǎn)速及不同類型的泵從圖5-3[5]查的;
H——單級(jí)揚(yáng)程(m)。
4.2 計(jì)算葉輪進(jìn)口直徑
4.2.1 先求葉輪進(jìn)口的有效直徑
葉輪進(jìn)口的有效直徑按式5-13[5]計(jì)算
m (4-2)
式中 ——系數(shù),按表4-1選取。通過(guò)查得,選取=4.5。
表4-1 系數(shù)的選擇
K0
效率與汽蝕指標(biāo)
適用范圍
3.5~4.0
效率較高,抗汽蝕性能差
多級(jí)泵次級(jí)葉輪及要求效率較高而對(duì)抗汽蝕性能要求不高的場(chǎng)合
>4.5~4.5
效率及抗汽蝕性能中等
一般清水泵的單級(jí)單吸及雙吸葉輪和多級(jí)泵第一級(jí)葉輪
>4.5~5.0
效率較低,抗汽蝕性能較好
鍋爐給水泵第一級(jí)葉輪及對(duì)抗汽蝕性能要求較高的場(chǎng)合
>5.0>5.5
效率有較大的降低,高抗汽蝕性能
冷凝泵有前置誘導(dǎo)輪的離心泵
4.2.2 葉輪進(jìn)口直徑
葉輪進(jìn)口直徑按式5-15[5]計(jì)算
mm (4-3)
4.3 確定葉輪出口直徑
葉輪出口直徑按式5-17[4]計(jì)算
(4-4)
mm (4-5)
式中 ——葉輪出口直徑系數(shù)。
4.4 確定葉片厚度
葉輪工作是,葉片上承受著液體的反作用力和葉片質(zhì)量的離心力受力情況比較復(fù)雜,很難精確計(jì)算,通??捎萌缦陆?jīng)驗(yàn)公式10-44[5]計(jì)算葉片的厚度。
mm (4-6)
系數(shù)K與離心泵的比轉(zhuǎn)速ns和葉片的材料有關(guān),其值由表10-10[5]所示,材料選用鋼,所以K=3.2。
表4-2 系數(shù)K與ns和材料的關(guān)系
ns
40
60
70
80
90
130
190
280
鑄鐵
鋼
3.2
3
3.5
3.2
3.8
3.3
4.0
3.4
4.5
3.5
6
5
7
6
10
8
最后,綜合考慮取葉片真實(shí)厚度3mm。
4.5 葉片出口角的確定
離心泵葉片出庫(kù)安放角一般小于,當(dāng)>和<并取較大值時(shí),H-Q性能曲線會(huì)出現(xiàn)駝峰現(xiàn)象,使離心泵運(yùn)行不穩(wěn)定。為了得到較高的效率,一般取。所以,綜合考慮取。
4.6 葉片數(shù)Z的選擇與葉片包角
葉輪葉片數(shù)的多少會(huì)影響泵揚(yáng)程的高低。用速度系數(shù)設(shè)計(jì)輪時(shí),因?yàn)樗俣认禂?shù)是現(xiàn)有泵的參數(shù)上統(tǒng)計(jì)得來(lái)的,而現(xiàn)有泵的葉片數(shù)Z與比轉(zhuǎn)速ns之間存在著一定的關(guān)系。因此,泵的葉片數(shù)Z也可以根據(jù)比轉(zhuǎn)速ns按照這一關(guān)系確定之,通過(guò)查表5-2[5],綜合考慮,Z=8。
表4-3 離心泵的葉片數(shù)Z
ns
30~60
60~180
180~280
Z
5片長(zhǎng)葉片加5片短葉片或9~8
8~6
6~5
如果葉片數(shù)Z大,葉片包角應(yīng)小一些,葉片出口角也可大一些;如果葉片數(shù)Z小,葉片包角應(yīng)小一些,葉片出口角也要取小一些。一般可取,綜合考慮,葉片包角取。
4.7 葉輪出口寬度
葉輪出口寬度b2可按式5-19[4]計(jì)算
(4-7)
mm (4-8)
綜合考慮,選取b2=5mm。
4.8 葉輪出口直徑及葉片出口安放角的精確計(jì)算
離心泵一般是選擇葉片出口角,精算D2,先計(jì)算葉輪出口軸面速度。
m/s (4-9)
葉輪出口速度按5-18[5]變形計(jì)算
m/s (4-10)
無(wú)限葉片數(shù)下的葉片出口流面速度
=-=23.5-2.042=19.1 m/s (4-11)
無(wú)限葉片數(shù)下的理論揚(yáng)程
m (4-12)
可根據(jù)式5-20[4]的變形來(lái)計(jì)算出圓周速度
(4-13)
此時(shí),可按式5-20[4]算出第一次精算的葉輪出口直徑D2
mm (4-14)
經(jīng)過(guò)比對(duì)可知,計(jì)算的精確值與速度系數(shù)法計(jì)算的誤差大于2%,所以修正,經(jīng)過(guò)計(jì)算當(dāng)為時(shí),誤差在2%之內(nèi),所以被修正為,并且確定葉輪出口直徑D2=150mm。
即得出,D2=150mm,=,Dj=68mm,dh=45mm,b2=5mm。
4.9 葉輪軸面投影圖的繪制
距軸心和作兩根平行于軸心O—O的直線AB和CD(圖4—1)。作O—O的垂線EF,它與CD和O—O線相交于E、F兩點(diǎn),通過(guò)E點(diǎn)作°~5°的直線EG。大小與比轉(zhuǎn)速和葉輪的結(jié)構(gòu)型式有關(guān)。小取°,大或雙進(jìn)口泵的值一般取3°~5°。以適當(dāng)?shù)膔2作圓弧并與AB和EG線相切,即可作出葉輪后蓋板的輪廓線。液體從軸向進(jìn)入葉輪而從徑向流出,為了減少轉(zhuǎn)彎的水力損失,在軸向尺寸許可的條件下盡量加大前后蓋板的圓弧半徑,但前后蓋板兩者間的圓弧半徑關(guān)系為(1.8~2.0)在CD線上截取,距軸心和作兩根平行于o---o的直線IJ和KL。在KL線上以M為圓心,為直徑作一個(gè)與葉輪后蓋板相切的圓。以合適的圓弧(以為半徑)和直線作葉輪前蓋板的輪廓線,此輪廓線一定要與IJ和的圓相切,并且還應(yīng)通過(guò)H點(diǎn)。
葉片進(jìn)口邊的位置對(duì)汽蝕、效率和特性曲線的形狀都有一定的影響。小比轉(zhuǎn)速葉輪進(jìn)口邊做成與軸線平行,而大比轉(zhuǎn)速和性能要求高的泵都做成進(jìn)口邊伸入葉輪的喉部。進(jìn)口邊伸入葉輪喉部,不但增加了葉片面積減少了葉片負(fù)荷,并且又能使葉輪進(jìn)口的圓周速度和相對(duì)速度都能降低,這樣改善了汽蝕性能。進(jìn)口邊伸入葉輪喉部,泵的H-Q曲線變陡,最高效率點(diǎn)向小流量方向移動(dòng),并且效率也有所提高。當(dāng)葉片進(jìn)口邊伸入葉輪喉部太多時(shí),葉片扭曲的厲害,容易造成液體的堵塞,另外對(duì)鑄造也帶來(lái)一定的困難。為了避免上述的缺點(diǎn),我們常常把葉片進(jìn)口邊布置與軸線成30°~45°的傾角。通過(guò)N、M、P各點(diǎn)作一根光滑的曲線,此曲線就是葉片的進(jìn)口邊,將來(lái)做平面投影圖時(shí)還要進(jìn)一步修正。葉片進(jìn)口邊與葉輪前后蓋板相交的角盡可能成90o,若太小,葉片堵塞嚴(yán)重,并且也會(huì)帶來(lái)鑄造和清砂的困難[6]。
根據(jù)求出的尺寸D2、Dj 、dh和b2,參考相近比轉(zhuǎn)速ns的葉輪圖紙,繪制葉輪的軸面投影。見(jiàn)圖4-1。
圖4-1 葉輪軸面投影圖
4.10 葉片繪型
對(duì)于比轉(zhuǎn)速ns小的離心泵,葉輪、葉片幾乎全部在軸面流道的徑向部分,其進(jìn)口邊均在同一個(gè)軸截面上,而且各流線葉片進(jìn)口三角形基本相同,葉片扭曲很小,可按圓柱形葉片設(shè)計(jì)那樣繪型。
圓柱形葉片的繪型比較簡(jiǎn)單,制造也很方便,但由于進(jìn)口邊來(lái)流一般不完全是徑向的,特別是對(duì)于前蓋流線,進(jìn)口邊往往處于軸面流拐彎處,,葉片的安放角與相對(duì)水流角會(huì)有較大的差別,造成較大的沖擊損失。一般說(shuō)比轉(zhuǎn)速小于90的泵,可采用圓柱形葉片,比轉(zhuǎn)速大于90的采用三位扭曲葉片。出于鑄造要求,有些比轉(zhuǎn)速大于90的離心泵,也采用圓柱形葉片。
圓柱形葉片可直接在平面圖上繪型,葉片骨線可用一個(gè)圓弧或多個(gè)圓弧畫(huà)成,本次設(shè)計(jì)采用兩段圓弧。見(jiàn)圖4-2。
作圖步驟:
1) 作出葉輪Dj和D2;
2) 作中間圓,其直徑
mm (4-15)
并計(jì)算d=Dj處得葉片安放角
(4-16)
3) 作半徑OA,由A點(diǎn)作AB,使;
4) 作半徑OC,使,并與圓弧Di相交與C;
5) 過(guò)A、C點(diǎn)作直線,并于Di交于另一點(diǎn)D;
6) 連線半徑OD,做直線DE,使,并與直線AB交于E點(diǎn);
7) 以E點(diǎn)為圓心以EA為半徑作圓弧,此圓弧必經(jīng)過(guò)D點(diǎn);
8) 作半徑OF,使,并與D1圓交于點(diǎn)F;
9) 過(guò)D、F點(diǎn)作直線,并與D1圓交于另一點(diǎn)G;
10)作半徑OG,作直線GH,使,并與DE線交于點(diǎn)H;
11)以H為圓心,以O(shè)H為半徑作圓弧,此圓弧必通過(guò)G點(diǎn);
12)以E和H為圓心,分別以為半徑作弧,并適當(dāng)削圓葉片進(jìn)口,即得圓柱形葉片形狀。其中為葉片真實(shí)厚度。
圖4-2 葉片
第5章 壓水室的水力設(shè)計(jì)
5.1 壓水室的作用
1)將葉輪中流出的液體收集起來(lái)送往下一級(jí)葉輪或管路系統(tǒng);
2)降低液體的流速,實(shí)現(xiàn)動(dòng)能到壓能的轉(zhuǎn)化,并可減小液體往下一級(jí)葉輪或管路系統(tǒng)中的損失。
3)消除液體流出葉輪后的旋轉(zhuǎn)運(yùn)動(dòng),以避免由于這種旋轉(zhuǎn)運(yùn)動(dòng)那個(gè)帶來(lái)的水力損失。
為達(dá)到上述要求,壓水室在設(shè)計(jì)中要做到:
1)壓水式的水力損失占整個(gè)泵中的損失的很大一部分,為此壓水室中的水力損失應(yīng)盡量?。?
2)盡可能使水流量軸對(duì)稱,提高泵運(yùn)行的穩(wěn)定性;
3)具有足夠的強(qiáng)度,較好的經(jīng)濟(jì)性及公益性,并考慮到泵布置的要求。
蝸形體的斷面形狀主要有梯形、矩形和圓形。
1)梯形斷面:梯形斷面結(jié)構(gòu)簡(jiǎn)單,水力性能好,是蝸形體斷面中用的最廣的一種。
2)矩形斷面:矩形斷面具有與梯形斷面相同的優(yōu)點(diǎn),適用于各種ns的泵上。它的工藝性最好,且斷面比較容易打磨或加工,用于材料為鑄造收最不易光潔的鋼或不銹鋼而又要求很光潔的蝸形體上是最適宜的。由于這種斷面是等寬的,所以徑向尺寸比梯形斷面要略大一些。
3)圓形斷面:如果葉輪出口后即是圓形斷面,中間沒(méi)有過(guò)渡區(qū),則由于圓形斷面在葉輪出口處突然擴(kuò)大,這對(duì)泵的水力性能是不利的。圓形斷面的優(yōu)點(diǎn)是在蝸形體受壓后,受力情況比上面兩種斷面要好。因此這種斷面適用于大型的額壓力高一些的泵上,這種情況下,液體出了葉輪后經(jīng)過(guò)擴(kuò)散導(dǎo)葉再進(jìn)入圓形斷面。
本次設(shè)計(jì)采用蝸形體,斷面形狀為梯形斷面。
5.2 蝸型體的計(jì)算
5.2.1 基圓直徑的確定
基圓直徑D3可按式5-40[5]計(jì)算
mm (5-1)
綜合考慮取mm。
5.2.2 蝸型體進(jìn)口寬度計(jì)算
進(jìn)口寬度b3可按式5-41[5]計(jì)算
mm (5-2)
5.2.3 舌角
舌角可按式5-42[5]
(5-3)
5.2.4 隔舌起始角
一般將通過(guò)隔舌起點(diǎn)(即蝸形線與基圓相交的點(diǎn))的斷面稱為0斷面,Ⅷ斷面與0斷面之間的夾角稱為隔舌起始角。理論上隔舌起點(diǎn)應(yīng)放在Ⅷ斷面的基圓上,但是泵的ns增加后,蝸形體中的速度減慢,蝸形體斷面面積增加,徑向尺寸增加,會(huì)使隔舌變得很薄,或影響蝸形體擴(kuò)散管在此區(qū)域的形狀。因此ns增大后,也應(yīng)適當(dāng)增加。值可參考表5-4[5]選取。
表5-1 隔舌起始
ns
30~80
90~130
140~220
230~360
通過(guò)查表5-4[5],綜合考慮選取。
5.2.5 蝸形體各斷面面積的計(jì)算
計(jì)算蝸形體各斷面面積時(shí),是把蝸形體中的圓周方向平均速度看作常數(shù)來(lái)設(shè)計(jì)的。計(jì)算時(shí)先根據(jù)ns在圖5-33[5]查的K3,按式5-43[5]求出各斷面中的平均速度。
m/s (5-4)
式中 ——蝸形體各斷面中的平均速度(m/s);
H——泵的揚(yáng)程(m);
g——重力加速度,g=10m/s2;
K3——速度系數(shù),由圖5-33[5]中查得。通過(guò)查表5-33[5]可得K3=0.55。
通過(guò)Ⅷ斷面的流量按式5-44[5]計(jì)算。
QⅧ=m3/h (5-5)
式中 ——隔舌起始角(度);
Q——泵的揚(yáng)程(m/s)。
Ⅷ斷面面積由式5-45[5]得。
FⅧ= QⅧ/=14.6/3600/14.6=0.00028m2 (5-6)
5.2.6 擴(kuò)散管的計(jì)算
蝸形體擴(kuò)散管部分的作用在于降低泵壓出口的液流速度,使液體一部分動(dòng)能轉(zhuǎn)化為壓力能,減少壓出管路的水力損失。
擴(kuò)散管的進(jìn)口可看做是蝸形體的Ⅷ斷面,其出口時(shí)泵的壓出口。設(shè)計(jì)計(jì)算擴(kuò)散管的長(zhǎng)度L和壓出口直徑Dy時(shí),原則上長(zhǎng)度L應(yīng)盡可能小,并應(yīng)照顧到泵壓出口法蘭尺寸符合法蘭標(biāo)準(zhǔn),法蘭位置適當(dāng),便于加工和裝拆法蘭螺栓。另外,為了減小擴(kuò)散損失,擴(kuò)散角應(yīng)在的范圍內(nèi)。
根據(jù)結(jié)構(gòu)選定擴(kuò)散管長(zhǎng)度L=140mm,由公式5-48[5]算出Ⅷ斷面當(dāng)量直徑DⅧ
DⅧ=(4FⅧ/π)1/2 =(40.00028/3.14)1/2=18.819mm (5-7)
綜合考慮,擴(kuò)散管當(dāng)量擴(kuò)散角,壓出口直徑Dy可由5-47[5]變形計(jì)算
+ DⅧ=mm (5-8)
壓出口直徑Dy=43.5mm
5.2.7 蝸形體的繪型
先確定基圓直徑D3和蝸形體進(jìn)口寬度b3,以b3為底邊,作等腰梯形,此梯形的二斜邊的斜度應(yīng)符合,并令其面積略大于Ⅷ斷面面積AⅧ,然后將梯形圓角的取大一些,使圓角后的梯形面積等于Ⅷ斷面的計(jì)算面積AⅧ,Ⅷ斷面即算作成。
繪圖時(shí)要注意下述事項(xiàng):為便于繪制斷面、比較各斷面的形狀和識(shí)圖方便起見(jiàn),八個(gè)斷面可繪制在一起;而為了圖面清晰,各個(gè)斷面可只繪出一半。蝸形體外壁如系弧線,則其圓弧半徑R8、R、R6……應(yīng)隨斷面包角的減小而有規(guī)律的增大,且應(yīng)使O斷面處為直線。否則會(huì)增大隔舌與葉輪之間的間隙,影響泵的性能。
斷面高度H8、H7……,圓角半徑r8、r7……,側(cè)劈斜度等,均應(yīng)如前所述,隨著包角的減小而有規(guī)律的減小。一般H8、H7、H6……H1的數(shù)值是等差的,h1不小于b3/2,斷面面積與計(jì)算值不符,則以調(diào)整斷面高度月H8、H7…較為方便。梯形斷面見(jiàn)圖5-1。蝸型體平面圖見(jiàn)圖5-2。
圖5-1 梯形斷面
圖5-2 蝸型體平面圖
第6章 吸水室的設(shè)計(jì)
離心泵吸水室是指泵進(jìn)口法蘭至葉輪進(jìn)口前泵體的過(guò)流部分,吸入室設(shè)計(jì)的好壞影響到水泵的抗空化性能。
按照吸水室的形狀可分為錐管吸水室、環(huán)形吸水室和辦螺旋形吸水室三種。本次吸水室采用錐管吸水室,如圖錐管吸水室廣泛用于單級(jí)懸臂離心泵上,其水力性能好,結(jié)構(gòu)簡(jiǎn)單,速度分布從進(jìn)口到水泵葉輪進(jìn)口逐步均勻變化,其出口直徑與進(jìn)口直徑相同,入口直徑比出口直徑大7%~10%,而入口的經(jīng)濟(jì)流速在3m/s左右,允許錐度為,這樣就可以確定該吸水室的尺寸。
錐管吸水室的進(jìn)口直徑
mm (6-1)
綜合考慮取Ds=80mm。
錐度取
則吸入長(zhǎng)度
mm (6-2)
綜合考慮,適當(dāng)加長(zhǎng)一些,取=60mm。結(jié)構(gòu)圖見(jiàn)6-1。
圖6-1 吸水室
第7章 徑向力軸向力及其平衡
7.1 徑向力及平衡
7.1.1 徑向力的產(chǎn)生
使用抽空腔室的水的壓力,最佳的操作條件,在每個(gè)部分的腔??室的所需壓力基本均勻。減速時(shí)泵的流量比最佳流動(dòng)條件下的液體流動(dòng)室漩渦,葉輪流體出口三角形輸出速度的絕對(duì)速度可以從最佳運(yùn)行速度可以看出大于絕對(duì)時(shí)間,也將腔室的頂部耳蝸從風(fēng)扇室流出的液體的速度不斷擊中耳蝸流體,使耳蝸流體室接收能量,在腔室中的耳蝸流體壓力開(kāi)始從語(yǔ)言管進(jìn)口日益普及。當(dāng)泵的流量比最佳流動(dòng)條件更高,相反,從液體雨葉輪絕對(duì)速度流出的絕對(duì)速度時(shí)的最佳操作條件,甚至更少的液體的范圍腔漩渦,在耳蝸兩種液體結(jié)果沖擊室,耳蝸液體能量室繼續(xù)支付,以增加從葉輪流出的液體的速度,使得在從非預(yù)期語(yǔ)言進(jìn)口擴(kuò)散管中的壓力腔室中的液體被逐漸減小。蝸室各部分產(chǎn)生的徑向力。并且由于在葉輪的流體壓力的不均勻分布,從而損壞液體流動(dòng)的葉輪的對(duì)稱軸,壓力,其中液體從葉輪少排出,從葉輪不太有壓力的地方的液體流出物。由于沿葉輪非常不同流動(dòng)的液體的圓周上,所以上的反作用力流體動(dòng)力葉輪的圓周上的效果是不一樣的,這又導(dǎo)致一個(gè)徑向力。作用在葉輪的徑向力是上述兩個(gè)向量和徑向力[5]。
7.1.2 徑向力的計(jì)算
壓水室是渦室的泵,在偏離設(shè)計(jì)工況時(shí)的徑向力可按式9-1[5]計(jì)算
N (7-1)
式中 ——偏離設(shè)計(jì)工況時(shí)的徑向力 (N);
——包括前、后蓋板的葉輪出口寬度,取 =0.01140m;
——實(shí)驗(yàn)系數(shù),查取得 =0.080。
7.1.3 徑向力的平衡
由于力和葉輪的寬度徑向出口出口直徑,葉輪成正比。因此,它的影響將隨著泵的尺寸增大,并且還與增加升力的增加[5]。
單級(jí)單吸離心泵的設(shè)計(jì),蝸殼泵只有徑向力的平衡,你可以使用雙蝸殼或添加面板以獲得在雙蝸殼,每間客房都希望,即使不能完全消除徑向力,但兩間通過(guò)蝸輪分離對(duì)稱地布置,作用在葉輪的徑向力相互平衡。有翅片能夠平衡徑向力,但在泵的結(jié)構(gòu)復(fù)雜化。
可以通過(guò)計(jì)算徑向力得到不是很大,你不能將設(shè)備設(shè)置為平衡徑向力。
7.2 軸向力及平衡
7.2.1 軸向力的產(chǎn)生
離心泵的工作中,轉(zhuǎn)動(dòng)部件受到平行于軸向力的軸。此力足夠大時(shí),特別是多級(jí)離心泵。軸向力主要由兩部分組成:
因?yàn)閷?duì)前,后輪的兩側(cè)不同壓力的1),壓力前蓋側(cè)為低時(shí),后板側(cè)的高壓,從葉輪罩的進(jìn)入點(diǎn)導(dǎo)出以獲得軸向力F1。
2)的流體的內(nèi)部和所述葉輪,以產(chǎn)生不同的動(dòng)態(tài)反作用力F2,其相反的方向F1的方向和速度的外面流動(dòng)。
除了抽吸泵輸入單懸臂更高的壓力,但也可以考慮作用在壓力輸入軸的軸向壓力引起與F1的方向相反。為立式離心泵,其轉(zhuǎn)子的重量的一部分,是軸向力[4]。
7.2.2 軸向力計(jì)算
1) 葉輪前后壓力引起的軸向力F1可按式2-58[4]估算
N (7-2)
式中 D1——葉輪進(jìn)口處的直徑(mm);
dh——輪轂直徑(mm);
H——葉輪實(shí)際揚(yáng)程(mm);
i——葉輪級(jí)數(shù)(mm);
k——系數(shù),ns=60~150時(shí)為0.6,當(dāng)ns=150~250時(shí)為0.8。
2)液體作用與葉輪入口的動(dòng)反力可按式2-59[4]計(jì)算
N (7-3)
式中 ——葉輪的質(zhì)量流量(m3/s);
v0——葉輪進(jìn)口處的速度(m/s)。
3)總的軸向里
N (7-4)
根據(jù)計(jì)算結(jié)果可知,軸向力指向入口。
7.2.3 軸向力的平衡
方法常用的一些的軸向力的或所有的液壓平衡。此方法包括葉輪或上的軸向力的對(duì)稱的,或附加的整個(gè)表面上的壓力,以確保在所有操作條件的均衡系統(tǒng)。但是充分達(dá)到平衡軸向力是困難的,因此必須承受不平衡推力軸承的軸向力,同時(shí)也為利用雙向軸承可承受的軸向力[4]。
泵葉輪的設(shè)計(jì)是一個(gè)單級(jí),所采取的措施是開(kāi)放平衡。
針對(duì)圖7-1所示的葉輪吸入打開(kāi)幾個(gè)平衡孔的葉輪,后面板之后,形象地比喻周圍空間的封面,而后蓋密封附加后的軸向力,對(duì)“直徑旋轉(zhuǎn)相同直徑的密封環(huán)。這很簡(jiǎn)單,但在損失增加,但也使進(jìn)口更加無(wú)序流動(dòng),降低泵的效率。
圖7-1 平衡孔
第8章 泵零件選擇及強(qiáng)度計(jì)算
8.1 葉輪蓋板的強(qiáng)度計(jì)算
蓋板中的應(yīng)力主要是由離心力引起的,如應(yīng)力的前后蓋板是等厚的,半徑越小的地方圓周應(yīng)力越大,在D0和Dx處的應(yīng)力近似由式10-42[5]計(jì)算,葉輪材料采用ZG1Cr13,許用應(yīng)力[]=98~130Mpa
MPa (8-1)
式中 ——蓋板中D0和Dx處得圓周應(yīng)力(Pa);
——材料密度(kg/m3);
u2——蓋板外徑的圓周速度(m/s);
[]——許用應(yīng)力(Pa)。
計(jì)算結(jié)果說(shuō)明葉輪安全。
按等強(qiáng)度設(shè)計(jì)蓋板時(shí),蓋板直徑Dx=0.08m處的厚度,首先得計(jì)算出角速度
角速度 rad/s (8-2)
蓋板直徑Dx=0.08m處的厚度,可按式10-43[5]計(jì)算
mm (8-3)
式中 ——蓋板直徑Dx=0.08m處的厚度;
——葉輪最大直徑處蓋板的厚度,參考其他葉輪尺寸,綜合考慮取4mm;
8.2 葉輪輪轂的強(qiáng)度計(jì)算
葉輪旋轉(zhuǎn)時(shí),葉輪的質(zhì)量能夠產(chǎn)生離心力。
離心力使輪轂內(nèi)孔處產(chǎn)生的圓周方向應(yīng)力可用如下近似公式10-45[5]進(jìn)行計(jì)算
MPa (8-4)
葉輪材料為ZG1Cr13,362Mpa
安全系數(shù) (8-5)
根據(jù)計(jì)算結(jié)果,葉輪強(qiáng)度滿足要求
式中 ——輪轂內(nèi)孔處的圓周方向應(yīng)力(Pa)
——材料密度(kg/m3);
——葉輪外徑的圓周速度(m/s)。
8.3 葉輪配合的選擇
在離心力的作用下,葉輪輪轂內(nèi)控增大,對(duì)于熱裝的葉輪,輪轂與軸的最小過(guò)盈量要大于離心力使輪轂內(nèi)控產(chǎn)生的變形量。
離心力使輪轂內(nèi)孔直徑的變形量可按式10-46[5]
=80μm (8-6)
本處的配合是過(guò)盈配合,輪轂與軸的最小過(guò)盈量要大于離心力使輪轂內(nèi)孔產(chǎn)生的變形量。
根據(jù)計(jì)算結(jié)果μm,參考其他離心泵的輪轂配合進(jìn)行計(jì)算,綜合考慮要把過(guò)盈余量保持在80~160μm即可。
1)確定基準(zhǔn)制:按照其不受原材料、標(biāo)準(zhǔn)件和結(jié)構(gòu)的限制,選基孔制。
2)確定孔的公差帶:配合公差μm,這個(gè)數(shù)值應(yīng)大于或等于孔與軸的公差之和,孔與軸的公差應(yīng)在μm左右。
這時(shí)要看孔、軸的標(biāo)準(zhǔn)公差等級(jí),如在7級(jí)以上,則取孔比軸低一級(jí),如在8級(jí)以下,則可取孔、軸同級(jí)。
查附表3-1[7],得IT7=57μm。
可取孔的標(biāo)準(zhǔn)公差等級(jí)為7級(jí),即孔的公差帶為H7,并可開(kāi)始畫(huà)公差帶圖。
3)確定軸公差帶:因?yàn)槭沁^(guò)盈配合,可以知道軸的公差帶位置在零線的上方。 (8-7)
因已知要求最小過(guò)盈余量μm,即軸基本偏差應(yīng)接近80μm。
查附表3-2[6],取軸的基本偏差為r,es=+108
軸的公差應(yīng)初步確定為
μm (8-8)
查附表3-1[6]得知,取IT6=36μm
這時(shí) μm (8-9)
軸的公差帶確定為r6
最后,配合選取。
8.4 輪轂熱裝溫度計(jì)算
加熱輪轂,使其內(nèi)控產(chǎn)生的變形(內(nèi)孔增大)應(yīng)為最大過(guò)盈量的1.5倍,可進(jìn)行裝配,加熱后的溫度稱為熱裝溫度,可用式計(jì)算。
(8-10)
t1=20℃,=,=,
式中 t——熱裝溫度(℃);
t1——室溫(℃);
——最大過(guò)盈量(cm);
——輪轂的平均直徑(cm);
——葉輪材料的線膨脹系數(shù)(1/deg)。
8.5 軸的強(qiáng)度校核
轉(zhuǎn)子1)的重
因?yàn)樗撬降谋茫鲛D(zhuǎn)子的重量的徑向力和徑向力是固定的方向。軸的重量是均勻的負(fù)荷,但為了簡(jiǎn)化計(jì)算,它可以成為集中負(fù)荷軸被分成段,蝸形泵,在設(shè)計(jì)條件下,無(wú)需額外的徑向力,同時(shí)不存在樹(shù)皮帶張力或齒輪嚙合力,然后該轉(zhuǎn)子的,在固定的方向上的徑向力僅重量。葉輪重量估計(jì)為260N。
2)軸向力
它作用于液體軸向力葉輪和平衡盤(pán)被計(jì)算在液壓設(shè)計(jì)。通過(guò)作用于葉輪軸向力F = 419.5N。
3)反作用力
在兩個(gè)徑向受力A,B反應(yīng)的力量固定的方向,分別為RA,RB說(shuō),他的當(dāng)事人已經(jīng)采取了起來(lái)。葉輪和209毫米,以190毫米軸承之間的距離的軸承之間的距離。
反應(yīng)的力等于所有的徑向力的總和。
RA+RB-260=0 (8-11)
對(duì)B點(diǎn)取矩
解之得
RA=546N
RB=-286N
4)彎矩圖及扭矩圖
圖8-1 彎矩圖及扭矩圖
通過(guò)彎矩圖及扭矩圖可知,最危險(xiǎn)斷面在軸承A處。
可以按第三強(qiáng)度理論來(lái)進(jìn)行校核。
MPa (8-12)
根據(jù)計(jì)算結(jié)果,軸的強(qiáng)度滿足要求。
8.6 鍵的強(qiáng)度計(jì)算
泵,聯(lián)接是傳遞的最大轉(zhuǎn)矩的關(guān)鍵點(diǎn)。對(duì)于獨(dú)立的泵葉輪可近似認(rèn)為關(guān)鍵的一點(diǎn)是,傳送到同一對(duì)的轉(zhuǎn)矩是相同的。
的目的是為了驗(yàn)證在轉(zhuǎn)矩的傳遞(例如,接頭,葉輪,平衡盤(pán)轉(zhuǎn)子部件...等),在有效的強(qiáng)度計(jì)算鏈路關(guān)鍵作用,并與由密鑰產(chǎn)生基本部件接觸剪切應(yīng)力對(duì)于工作壓應(yīng)力(當(dāng)然,包括鍵,但控制通常是差份抗擠壓)扭矩傳遞面滿足電阻的要求。
根據(jù)關(guān)鍵共同標(biāo)準(zhǔn)扳手扁圓形(A)中,鍵寬b=0.008米,關(guān)鍵高度h=0.008米,關(guān)鍵的L總長(zhǎng)度= 0.025葉輪的直徑選定。圖8-2給出結(jié)構(gòu)圖..
圖8-2 鍵的結(jié)構(gòu)圖
8.6.1 工作面上的擠壓應(yīng)力
鍵及其聯(lián)接零件傳遞扭矩的工作面上擠壓應(yīng)力應(yīng)滿足如下公式1
收藏
編號(hào):21139960
類型:共享資源
大?。?span id="flpmxij" class="font-tahoma">1.32MB
格式:ZIP
上傳時(shí)間:2021-04-24
40
積分
- 關(guān) 鍵 詞:
-
單級(jí)單吸清水離心泵設(shè)計(jì)
單級(jí)單吸
清水
離心泵
設(shè)計(jì)
- 資源描述:
-
單級(jí)單吸清水離心泵設(shè)計(jì),單級(jí)單吸清水離心泵設(shè)計(jì),單級(jí)單吸,清水,離心泵,設(shè)計(jì)
展開(kāi)閱讀全文
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書(shū)面授權(quán),請(qǐng)勿作他用。