蜂窩煤成型機設計【工業(yè)型煤成型機的設計】
蜂窩煤成型機設計【工業(yè)型煤成型機的設計】,工業(yè)型煤成型機的設計,蜂窩煤成型機設計【工業(yè)型煤成型機的設計】,蜂窩煤,成型,設計,工業(yè)
本科畢業(yè)設計姓 名: 學 號: 學 院: 應用技術學院 專 業(yè): 機械工程及自動化 論文題目: 蜂窩煤成型機設計成型機 專 題: 指導教師: XXX 職 稱: XXX大學畢業(yè)論文任務書學院 專業(yè)年級 學生姓名 任務下達日期:XXX 年 1 月11 日畢業(yè)論文日期: XXX年 3 月 25 日至 XXX年 6月20 日畢業(yè)論文題目: 蜂窩煤成型機設計成型機畢業(yè)論文主要內(nèi)容和要求:結合畢業(yè)實習,采用蜂窩煤成型機設計成型技術原理;利用自重加料方式,設計一臺工業(yè)型煤成型機。輥子轉速:8-10轉/分(輥子圓周速度0.4-0.5米/秒);成型壓力:15-30kn/cm;小時產(chǎn)量: 30-35噸;型球尺寸:mm;采用液壓加載;鉸接式框架結構:采用同步式齒輪箱傳動。1、 明確該裝置的工作原理及相關的受力分析,參考設計參數(shù)確定電動機功率,完成該裝置的總體設計。2、 利用三維輔助設計,完成同步式齒輪箱設計。3、 同步齒輪傳動箱組件設計、零件圖工作圖設計。4、 編寫完成整機設計計算說明書。院長簽字: 指導教師簽字:xx大學畢業(yè)論文指導教師評閱書指導教師評語(基礎理論及基本技能的掌握;獨立解決實際問題的能力;研究內(nèi)容的理論依據(jù)和技術方法;取得的主要成果及創(chuàng)新點;工作態(tài)度及工作量;總體評價及建議成績;存在問題;是否同意答辯等):成 績: 指導教師簽字: 年 月 日XXX大學畢業(yè)論文評閱教師評閱書評閱教師評語(選題的意義;基礎理論及基本技能的掌握;綜合運用所學知識解決實際問題的能力;工作量的大??;取得的主要成果及創(chuàng)新點;寫作的規(guī)范程度;總體評價及建議成績;存在問題;是否同意答辯等):成 績: 評閱教師簽字: 年 月 日XXX大學畢業(yè)論文答辯及綜合成績答 辯 情 況提 出 問 題回 答 問 題正 確基本正確有一般性錯誤有原則性錯誤沒有回答答辯委員會評語及建議成績:答辯委員會主任簽字: 年 月 日學院領導小組綜合評定成績:學院領導小組負責人: 年 月 日目 錄緒論11.電機選型及傳動比計算21.1選擇電動機21.1.1選擇電動機的類型和結構形式21.1.2選擇電動機的容量21.2計算傳動裝置的總傳動比并分配各級傳動比31.2.1傳動裝置的總傳動比31.2.2分配各級傳動比32.V帶設計計算421確定計算功率422選擇帶型423確定帶輪基準直徑424驗算帶的速度525初定中心距526確定基準長度527確定實際軸間距628驗算小帶輪包角629單根V帶的基本額定功率6210單根V帶的功率增量6211V帶的根數(shù)6212單根V帶的預緊力72.13帶輪的結構72.13.1小帶輪的結構73基本參數(shù)計算8各軸的轉速、傳遞功率、轉矩84同步齒輪減速箱齒輪的設計計算94.1I軸齒輪設計計算94.1.1選擇齒輪材料94.1.2初定齒輪主要參數(shù)94.1.3校核齒面接觸疲勞強度124.2軸齒輪設計計算144.2.1選擇齒輪材料144.2.2初定齒輪主要參數(shù)144.2.3校核齒面接觸疲勞強度174.3軸齒輪設計計算194.3.1選擇齒輪材料194.3.2初定齒輪主要參數(shù)194.3.3校核齒面接觸疲勞強度224.4軸齒輪設計計算244.4.1選擇齒輪材料245同步齒輪減速箱軸的設計計算295.1軸的設計計算295.1.1選擇軸的材料295.1.2初步估算軸的的直徑295.1.3軸上零部件的選擇和軸的結構設計295.1.4軸的受力分析305.1.5軸的強度計算325.2軸的設計計算335.2.1選擇軸的材料335.2.2初步估算軸的的直徑335.2.3軸上零部件的選擇和軸的結構設計335.2.4軸的受力分析345.2.5軸的強度計算375.3軸的設計計算385.3.1選擇軸的材料385.3.2初步估算軸的的直徑385.3.3軸上零部件的選擇和軸的結構設計395.3.4軸的受力分析395.3.5軸的強度計算445.4軸的設計計算445.4.1選擇軸的材料445.4.2初步估算軸的的直徑445.4.3軸上零部件的選擇和軸的結構設計455.4.4軸的受力分析455.5.5軸的強度計算536.同步齒輪減速箱軸承的校核546.1I軸軸承的校核546.1.1計算軸承支反力546.1.2軸承的派生軸向力546.1.3軸承所受的軸向載荷546.1.4軸承的當量動載荷556.1.5軸承壽命556.2II軸軸承的校核556.2.1計算軸承支反力566.2.2軸承的派生軸向力566.2.3軸承所受的軸向載荷566.2.4軸承的當量動載荷566.2.5軸承壽命576.3III軸軸承的校核576.3.1計算軸承支反力576.3.2軸承的派生軸向力576.3.3軸承所受的軸向載荷576.3.4軸承的當量動載荷586.3.5軸承壽命586.4IV軸軸承的校核586.4.1計算軸承支反力596.4.2軸承的派生軸向力596.4.3軸承所受的軸向載荷596.4.4軸承的當量動載荷596.4.5軸承壽命606.5V軸軸承的校核606.5.1計算軸承支反力606.5.2軸承的派生軸向力606.5.3軸承所受的軸向載荷606.5.4軸承的當量動載荷616.5.5軸承壽命617.同步齒輪減速箱鍵的校核617.1I軸鍵的校核617.2II軸健的校核627.3III軸健的校核627.4IV軸健的校核627.5V軸鍵的校核638.同步齒輪減速箱箱體及附件設計計算638.1箱體設計638.1.1箱體結構設計638.2減速器附件638.2.1檢查孔及其蓋板638.2.2通氣器638.2.3軸承蓋和密封裝置638.2.4定位銷648.2.5油面指示器648.2.6放油開關648.2.7起吊裝置649機架及成型裝置的設計計算649.1型輥軸的設計649.1.1選擇軸的材料649.1.2初步估算軸的的直徑649.1.3軸上零部件的選擇和軸的結構設計649.2輥心的設計659.2.1選擇輥心的材料659.2.2輥心結構設計659.3型板的設計6610 液壓加載裝置的選型66結論67參考文獻68 第70頁 緒論1.型煤概況 隨著機械化采煤程度的提高,產(chǎn)生了大量的粉煤。粉煤的市場價值很低,造成大量的積壓。市場對型煤的需求量較大,型煤技術有很大的市場空間。同時生產(chǎn)型煤的原料煤的質(zhì)地不受限制。2.成型設備概況 成型設備是型煤生產(chǎn)中的關鍵設備,選擇成型設備應以原煤的特性,型煤的用途及成時壓力等諸多因素為基礎。目前工業(yè)上應用最廣的是對輥式成型機。另外,還有沖壓式成型機,環(huán)式成型機和螺旋式成型機等3.對輥成型機概況對輥成型機可用于成型、壓塊和顆粒的高壓破碎,它的給料系統(tǒng)和輥面的設計要根據(jù)使用要求來設計。下面就對輥成型機在成型方面的應用進行描述。對輥成型機主要包括以下幾個主要部件:3.1同步齒輪傳動系統(tǒng)對輥成型機的同步齒輪傳動系統(tǒng)由包括兩個同步齒輪在內(nèi)的減速器,安全聯(lián)軸器等組成。安全聯(lián)軸器是一個能自動復位的機構,它可以在正常工作時驅動轉距的1.71.9倍范圍內(nèi)調(diào)整。最主要的是,同步齒輪和齒輪聯(lián)軸器的連接保證了提供給型輥完全均勻的線速度。3.2成型系統(tǒng)對輥成型機的最主要部分是型輥。由于成型壓力大,直徑大,所以采用八塊型板拼裝的方式,輥芯由鑄鋼材料鑄造而成,型板由強度高的耐磨材料制造。3.3液壓加載系統(tǒng)液壓加載系統(tǒng)用于提供壓力迫使浮輥向被壓實的物料和固定輥靠近。為滿足特殊的工作需要,壓力的高低和大小可以自由調(diào)整。壓力的梯度隨間距的變化而升高,通過改變液壓儲能器中氮的分壓可以在很大范圍內(nèi)調(diào)整壓力的梯度。在其他尖硬物料被壓入壓輥的間隙時液壓系統(tǒng)也用作安全裝置。1.電機選型及傳動比計算1.1選擇電動機1.1.1選擇電動機的類型和結構形式按工作條件和要求,選用一般用途的Y系列三相異步電動機,為臥式封閉結構。1.1.2選擇電動機的容量輥子轉速:n=810r/min輥子圓周速度:v=0.40.5m/s=n/30 v=r初計算型輥半徑 = 型球體積 每塊型煤質(zhì)量 型輥周向上分布型窩個數(shù) (個)型輥軸向上分布型窩數(shù) 取整 型輥長度 取整B=630 mm輥上合力 KN阻力矩 工作機所需的功率:P=式中 =93000Nm n=10 r/min 代入上式得 P=KW電動機所需功率:P=P/從電動機到輥輪主軸之間的傳動裝置的總效率:=式中 =0.95 V帶傳動效率 =0.98 聯(lián)軸器效率 =0.99 軸承效率 =0.97 齒輪傳動效率代入上式得 =0.950.980.990.97 =0.6777 =P/=97.4/0.6777=143.2 KW選擇電動機額定功率PP,根據(jù)傳動系統(tǒng)圖和推薦的傳動比合理范圍V帶傳動的傳動比 2-4 ;單級圓柱齒輪傳動比 3-6 。所以選擇Y315L1-4電動機,額定功率160kw,滿載轉速1480 r/min 。1.2計算傳動裝置的總傳動比并分配各級傳動比1.2.1傳動裝置的總傳動比=1481.2.2分配各級傳動比該傳動裝置中使用的是三級圓柱齒輪減速器,考慮到以下原則:1)使各級傳動的承載能力大致等(齒面接觸強度大致相等)2)使減速器能獲得最小外形尺寸和重量3)使各級傳動中大齒輪的浸油深度大致相等,潤滑最為簡便分配各級齒輪傳動比為=4。25 =4 =1.8輥輪的直徑為956mm,兩輥輪這間的間隙取1mm,所以兩輥輪的中心距為957mm。由此調(diào)節(jié)可初定同步齒輪的傳動比為2.4 。則V帶傳動的傳動比為2。2.V帶設計計算 21確定計算功率 根據(jù)工作情況 查表12-12選擇工況系數(shù) 設計功率 22選擇帶型 根據(jù)和 選擇25N窄V帶(有效寬度制)23確定帶輪基準直徑 小帶輪的基準直徑 參考表12-19和圖12-4取 傳動比 取彈性滑動系數(shù) 大帶輪基準準直徑 取標準值 實際轉速 實際傳動比 24驗算帶的速度 25初定中心距 取26確定基準長度 由表12-10選取相應基準長度 27確定實際軸間距 安裝時所需最小軸間距 張緊或補償伸長所需最大軸間距 28驗算小帶輪包角 29單根V帶的基本額定功率 根據(jù)和 由表12-17n查得25N型窄V帶 210單根V帶的功率增量考慮傳動比的影響,額定功率的增量由表12-17n查得211V帶的根數(shù) 由表12-13查得 由表12-16查得 根 取7根212單根V帶的預緊力 由表12-142.13帶輪的結構2.13.1小帶輪的結構 小帶輪采用實心輪結構。 由Y280M-4電動機可知,其軸伸直徑,長度,小帶輪軸孔直徑應取,轂長應小于. 由表12-22查得,小帶輪結構為實心輪 由V帶的實際傳動比,對減速器的傳動比進行重新分配。 傳動裝置總傳動比 V帶傳動傳動比 同步齒輪的傳動比 則三級減速器的傳動比為 ,以達到傳動比的調(diào)節(jié)。則 3基本參數(shù)計算各軸的轉速、傳遞功率、轉矩軸 = =軸 軸 軸 軸 4同步齒輪減速箱齒輪的設計計算4.1I軸齒輪設計計算4.1.1選擇齒輪材料小齒輪 20CrMnTi 滲碳淬火 HRC 5662大齒輪 20CrMnTi 滲碳淬火 HRC 5662 齒輪的疲勞極限應力按中等質(zhì)量(MQ)要求從圖14-32和圖14-24中查得 參考我國試驗數(shù)據(jù)(表14-45)后,將適當降低:4.1.2初定齒輪主要參數(shù)初定齒輪主要參數(shù) 考慮載荷有輕微沖擊、非對稱軸承布置,取載荷系數(shù)K=2 按齒根彎曲疲勞強度估算齒輪尺寸,計算模數(shù): 按表14-34,并考慮傳動比,選用小齒輪齒數(shù)=24, 大齒輪齒數(shù) 取 = 102 按表14-33,選齒寬系數(shù)由圖14-14查得大小齒輪的復合齒形系數(shù)(時) 由于輪齒單向受力,齒輪的許用彎曲應力 由于,故按小齒輪的抗彎強度計算模數(shù) 采用斜齒輪,按表14-2,取標準模數(shù)。初取=13(表14-33),則齒輪中心距 由于單件生產(chǎn),不必取標準中心距,取。準確的螺旋角 齒輪分度圓直徑 工作齒寬 為了保證,取。齒輪圓周速度 按此速度查表14-78,齒輪精度選用8級即可,齒輪精度8-7-7(GB10095-1988)校核重合度縱向重合度 (圖14-8) 端面重合度 (圖14-3) 總重合度 4.1.3校核齒面接觸疲勞強度 分度圓上的切向力 由表14-39查得使用系數(shù) 動載荷系數(shù)式中 (表14-40)齒數(shù)比 將有關數(shù)據(jù)代入計算式 齒向載荷分布系數(shù) 齒向載荷分配系數(shù),根據(jù) 查表14-43 得 節(jié)點區(qū)域系數(shù),按和查圖14-11 得材料彈性系數(shù)查表14-44 得重合度系數(shù) 查圖14-12 得螺旋角系數(shù) 查圖14-13 得 由于可取 計算接觸強度強度安全系數(shù) 式中各系數(shù)的確定計算齒面應力循環(huán)數(shù) 按齒面不允許出現(xiàn)點蝕,查圖14-37 得壽命系數(shù) 潤滑油膜影響系數(shù) 查表14-47 得 齒面工作硬化系數(shù) 按圖14-39 查得尺寸系數(shù) 按,查圖14-40 得將以上數(shù)據(jù)代入計算式 由表14-49,按一般可靠度要求,選用最小安全系數(shù)。和均大于,故安全。4.2軸齒輪設計計算4.2.1選擇齒輪材料小齒輪 20CrMnTi 滲碳淬火 HRC 5662大齒輪 20CrMnTi 滲碳淬火 HRC 5662 齒輪的疲勞極限應力按中等質(zhì)量(MQ)要求從圖14-32和圖14-24中得 參考我國試驗數(shù)據(jù)(表14-45)后,將適當降低:4.2.2初定齒輪主要參數(shù)按齒根彎曲疲勞強度估算齒輪尺寸,計算模數(shù) 按表14-34,并考慮傳動比,選用小齒輪齒數(shù)=26, 大齒輪齒數(shù) 取整 =102 按表14-33,選齒寬系數(shù)由圖14-14查得大小齒輪的復合齒形系數(shù)(時) 由于輪齒單向受力,齒輪的許用彎曲應力 由于,故按小齒輪的抗彎強度計算模數(shù) 采用斜齒輪,按表14-2,取標準模數(shù)。初取=13(表14-33),則齒輪中心距 由于單件生產(chǎn),不必取標準中心距,取。準確的螺旋角 齒輪分度圓直徑 工作齒寬 為了保證,取。齒輪圓周速度 按此速度查表14-78,齒輪精度選用8級即可,齒輪精度8-7-7(GB10095-1988)校核重合度縱向重合度 (圖14-8) 端面重合度 (圖14-3) 總重合度 4.2.3校核齒面接觸疲勞強度 分度圓上的切向力 由表14-39查得使用系數(shù) 動載荷系數(shù)式中 (表14-40)齒數(shù)比將有關數(shù)據(jù)代入計算式 齒向載荷分布系數(shù) 齒向載荷分配系數(shù),根據(jù) 查表14-43 得節(jié)點區(qū)域系數(shù),按和查圖14-11 得材料彈性系數(shù)查表14-44 得重合度系數(shù) 查圖14-12 得螺旋角系數(shù) 查圖14-13 得 由于可取 計算接觸強度強度安全系數(shù) 式中各系數(shù)的確定計算齒面應力循環(huán)數(shù) 按齒面不允許出現(xiàn)點蝕,查圖14-37 得壽命系數(shù) 潤滑油膜影響系數(shù) 查表14-47 得 齒面工作硬化系數(shù) 按圖14-39 查得尺寸系數(shù) 按,查圖14-40 得將以上數(shù)據(jù)代入計算式 由表14-49,按一般可靠度要求,選用最小安全系數(shù)。和均大于,故安全。4.3軸齒輪設計計算4.3.1選擇齒輪材料小齒輪 20CrMnTi 滲碳淬火 HRC 5662大齒輪 20CrMnTi 滲碳淬火 HRC 5662 齒輪的疲勞極限應力按中等質(zhì)量(MQ)要求得 參考我國試驗數(shù)據(jù)(表14-45)后,將適當降低:4.3.2初定齒輪主要參數(shù) 按齒根彎曲疲勞強度估算齒輪尺寸,計算模數(shù) 按表14-34,并考慮傳動比,選用小齒輪齒數(shù)=40, 大齒輪齒數(shù) 取72 按表14-33,選齒寬系數(shù)由圖14-14查得大小齒輪的復合齒形系數(shù)(時) 由于輪齒單向受力,齒輪的許用彎曲應力 由于,故按小齒輪的抗彎強度計算模數(shù) 采用斜齒輪,按表14-2,取標準模數(shù)。初取=13(表14-33),則齒輪中心距 由于單件生產(chǎn),不必取標準中心距,取。準確的螺旋角 齒輪分度圓直徑 工作齒寬 為了保證,取。齒輪圓周速度 按此速度查表14-78,齒輪精度選用8級即可,齒輪精度8-7-7(GB10095-1988)校核重合度縱向重合度 (圖14-8) 端面重合度 (圖14-3) 總重合度 4.3.3校核齒面接觸疲勞強度 分度圓上的切向力 由表14-39查得使用系數(shù) 動載荷系數(shù)式中 (表14-40)齒數(shù)比將有關數(shù)據(jù)代入計算式 齒向載荷分布系數(shù) 齒向載荷分配系數(shù),根據(jù) 查表14-43 得節(jié)點區(qū)域系數(shù),按和查圖14-11 得材料彈性系數(shù)查表14-44 得重合度系數(shù) 查圖14-12 得螺旋角系數(shù) 查圖14-13 得 由于可取 計算接觸強度強度安全系數(shù) 式中各系數(shù)的確定計算齒面應力循環(huán)數(shù) 按齒面不允許出現(xiàn)點蝕,查圖14-37 得壽命系數(shù) 潤滑油膜影響系數(shù) 查表14-47 得 齒面工作硬化系數(shù) 按圖14-39 查得尺寸系數(shù) 按,查圖14-40 得將以上數(shù)據(jù)代入計算式 由表14-49,按一般可靠度要求,選用最小安全系數(shù)。和均大于,故安全。4.4軸齒輪設計計算4.4.1選擇齒輪材料小齒輪 20CrMnTi 滲碳淬火 HRC 5662大齒輪 20CrMnTi 滲碳淬火 HRC 5662 齒輪的疲勞極限應力按中等質(zhì)量(MQ)要求得 參考我國試驗數(shù)據(jù)后,將適當降低:4.4.2初定齒輪主要參數(shù)按齒根彎曲疲勞強度估算齒輪尺寸,計算模數(shù) 按表14-34,并考慮傳動比,選用小齒輪齒數(shù)=24, 大齒輪齒數(shù) 取58 按表14-33,選齒寬系數(shù)由圖14-14查得大小齒輪的復合齒形系數(shù)(時) 由于輪齒單向受力,齒輪的許用彎曲應力 由于,故按小齒輪的抗彎強度計算模數(shù) 采用斜齒輪,按表14-2,取標準模數(shù)。初取=13(表14-33),則齒輪中心距 由于單件生產(chǎn),不必取標準中心距,取。準確的螺旋角 齒輪分度圓直徑 工作齒寬 為了保證,取。齒輪圓周速度 按此速度查表14-78,齒輪精度選用8級即可,齒輪精度8-7-7(GB10095-1988)校核重合度縱向重合度 (圖14-8) 端面重合度 (圖14-3) 總重合度 4.4.3校核齒面接觸疲勞強度 分度圓上的切向力 由表14-39查得使用系數(shù) 動載荷系數(shù)式中 (表14-40)齒數(shù)比將有關數(shù)據(jù)代入計算式 齒向載荷分布系數(shù) 齒向載荷分配系數(shù),根據(jù) 查表14-43 得節(jié)點區(qū)域系數(shù),按和查圖14-11 得材料彈性系數(shù)查表14-44 得重合度系數(shù) 查圖14-12 得螺旋角系數(shù) 查圖14-13 得 由于可取 計算接觸強度強度安全系數(shù) 式中各系數(shù)的確定計算齒面應力循環(huán)數(shù) 按齒面不允許出現(xiàn)點蝕,查圖14-37 得壽命系數(shù) 潤滑油膜影響系數(shù) 查表14-47 得 齒面工作硬化系數(shù) 按圖14-39 查得尺寸系數(shù) 按,查圖14-40 得將以上數(shù)據(jù)代入計算式 由表14-49,按一般可靠度要求,選用最小安全系數(shù)。和均大于,故安全。5同步齒輪減速箱軸的設計計算5.1軸的設計計算5.1.1選擇軸的材料該軸上的齒輪的分度圓直徑和軸徑相差不大,故做成齒輪軸,選用45號鋼,調(diào)質(zhì)處理,其力學性能 5.1.2初步估算軸的的直徑 取軸徑為70mm5.1.3軸上零部件的選擇和軸的結構設計5.1.3.1初步選擇滾動軸承根據(jù)軸的受力,選取30000型圓錐滾子軸承,為了便于軸承的裝配,取裝軸承處的直徑。初選滾動軸承為33015型,其尺寸為,定位軸肩高度5.1.3.2根據(jù)軸向定位的要求確定軸的各段直徑和長度軸段為圓柱形軸伸,查表21-9,的軸伸長。軸段直徑為,根據(jù)減速器與軸承端蓋的結構,確定端蓋總寬度為,考慮端蓋與帶輪間隙,。軸段安裝軸承,由于圓柱形軸伸的原因,采用雙列軸承,取,。軸段軸肩長度,按齒輪距箱體內(nèi)壁這距離取,考慮到箱體的鑄造誤差,滾動軸承應距箱體內(nèi)壁,取,從各軸的結構選,。軸安裝軸承,5.1.4軸的受力分析5.1.4.1作出軸的計算簡圖 5.1.4.2軸受外力的計算軸傳遞的轉矩 齒輪的圓周力 齒輪的徑向力 齒輪的軸向力 5.1.4.3求支反力在水平面內(nèi)的支反力 由得 由得 彎矩圖 在垂直面內(nèi)的支反力由得 由得 彎矩圖 扭矩圖 5.1.5軸的強度計算按彎扭合成強度條件計算由于齒輪作用力在D截面的最大合成彎矩 D截面的當量彎矩 安全 5.2軸的設計計算5.2.1選擇軸的材料選用45號鋼,調(diào)質(zhì)處理。 5.2.2初步估算軸的的直徑 取軸徑為110mm5.2.3軸上零部件的選擇和軸的結構設計5.2.3.1初步選擇滾動軸承根據(jù)軸的受力,選取30000型圓錐滾子軸承,為了便于軸承的裝配,取裝軸承處的直徑。初選滾動軸承為30222型,其尺寸為。5.2.3.2根據(jù)軸向定位的要求確定軸的各段直徑和長度軸段安裝軸承,取,。軸段安裝齒輪,齒輪左端采用套筒定位,右端使用軸肩定位。取軸段直徑,齒輪寬度為110mm,為了全套筒端面可靠地壓緊齒輪,軸段長度應略短于齒輪輪轂寬度取。軸段軸環(huán),。軸段為齒輪軸寬度取。軸段安裝軸承,5.2.4軸的受力分析5.2.4.1作出軸的計算簡圖 5.2.4.2軸受外力的計算軸傳遞的轉矩 大齒輪的圓周力 大齒輪的徑向力 大齒輪的軸向力 小齒輪的圓周力 齒輪的徑向力 齒輪的軸向力 5.2.4.3求支反力在水平面內(nèi)的支反力由得 由得 彎矩圖 在垂直面內(nèi)的支反力由得 由得 彎矩圖 扭矩圖 5.2.5軸的強度計算由于齒輪作用力在D截面的最大合成彎矩 D截面的當量彎矩 由于齒輪作用力在E截面的最大合成彎矩 E截面的當量彎矩 安全 5.3軸的設計計算5.3.1選擇軸的材料選用45號鋼,調(diào)質(zhì)處理,其力學性能 5.3.2初步估算軸的的直徑 取軸徑為170mm5.3.3軸上零部件的選擇和軸的結構設計5.3.3.1初步選擇滾動軸承根據(jù)軸的受力,選取30000型圓錐滾子軸承,取裝軸承處的直徑。初選滾動軸承為32034型,其尺寸為。5.3.3.2根據(jù)軸向定位的要求確定軸的各段直徑和長度軸段安裝軸承,取,。軸段安裝齒輪,齒輪左端采用套筒定位,右端使用軸肩定位。取軸段直徑,齒輪寬度為230mm,為了套筒端面可靠地壓緊齒輪,軸段長度應略短于齒輪輪轂寬度取。軸段軸肩高度,取,為。5.3.4軸的受力分析5.3.4.1作出軸的計算簡圖 5.3.4.2軸受外力的計算軸傳遞的轉矩 大齒輪的圓周力 大齒輪的徑向力 大齒輪的軸向力 小齒輪的圓周力 小齒輪的徑向力 小齒輪的軸向力 5.3.4.3求支反力在水平面內(nèi)的支反力 由得 得 彎矩圖 在垂直面內(nèi)的支反力由得 由得 彎矩圖 扭矩圖 5.3.5軸的強度計算按彎扭合成強度條件計算由于齒輪作用力在D截面的最大合成彎矩 D截面的當量彎矩 5.4軸的設計計算5.4.1選擇軸的材料選用45號鋼,調(diào)質(zhì)處理,其力學性能由表21-1查得 5.4.2初步估算軸的的直徑 取軸徑為170mm5.4.3軸上零部件的選擇和軸的結構設計5.4.3.1初步選擇滾動軸承根據(jù)軸的受力,選取30000型圓錐滾子軸承,為了便于軸承的裝配,取裝軸承處的直徑。初選滾動軸承為32034型,其尺寸為。5.4.3.2根據(jù)軸向定位的要求確定軸的各段直徑和長度軸段安裝軸承,取,。軸段安裝齒輪,齒輪左端采用套筒定位,右端使用軸肩定位。取軸段直徑,齒輪寬度為130mm,為了全套筒端面可靠地壓緊齒輪,軸段長度應略短于齒輪輪轂寬度取。軸段軸肩高度,取,。軸環(huán)寬度,取,則。軸段為中間段, ,。軸段為軸肩,。VI軸段安裝齒輪,齒輪右端采用套筒定位,左端使用軸肩定位。取軸段直徑,。II軸段安裝軸承,。5.4.4軸的受力分析5.4.4.1作出軸的計算簡圖 5.4.4.2軸受外力的計算軸傳遞的轉矩 大齒輪的圓周力 大齒輪的徑向力 大齒輪的軸向力 小齒輪的圓周力 齒輪的徑向力 齒輪的軸向力 5.4.4.3求支反力在水平面內(nèi)的支反力由得 由得 彎矩圖 在垂直面內(nèi)的支反力 由得 由得 彎矩圖 扭矩圖 5.4.5軸的強度計算按彎扭合成強度條件計算由于齒輪作用力在D截面的最大合成彎矩 D截面的當量彎矩 5.5軸的設計計算5.5.1選擇軸的材料選用45號鋼,調(diào)質(zhì)處理。 5.5.2初步估算軸的的直徑 取軸徑為220mm5.5.3軸上零部件的選擇和軸的結構設計5.5.3.1初步選擇滾動軸承根據(jù)軸的受力,選取20000型調(diào)心滾子軸承,為了便于軸承的裝配,取裝軸承處的直徑。初選滾動軸承為23072型,其尺寸為。5.5.3.2根據(jù)軸向定位的要求確定軸的各段直徑和長度軸段安裝軸承,取,。軸段安裝齒輪,齒輪左端采用套筒定位,右端使用軸肩定位。取軸段直徑,齒輪寬度為300mm,取。軸段軸肩高度,取,。軸環(huán)寬度,取,則。I軸段安裝軸承,。V軸段伸出軸,聯(lián)接聯(lián)軸器,取,。5.5.4軸的受力分析5.5.4.1作出軸的計算簡圖 5.5.4.2軸受外力的計算軸傳遞的轉矩 齒輪的圓周力 齒輪的徑向力 齒輪的軸向力 5.5.4.3求支反力在水平面內(nèi)的支反力由得 得 彎矩圖 在垂直面內(nèi)的支反力由得 得 彎矩圖 扭矩圖 5.5.5軸的強度計算按彎扭合成強度條件計算由于齒輪作用力在D截面的最大合成彎矩 D截面的當量彎矩 6.同步齒輪減速箱軸承的校核6.1I軸軸承的校核初選滾動軸承為32215型,其尺寸為基本額定載荷Cr: 170kN6.1.1計算軸承支反力合成支反力 6.1.2軸承的派生軸向力 6.1.3軸承所受的軸向載荷因 6.1.4軸承的當量動載荷 , , 6.1.5軸承壽命 因,故按計算 查得, 6.2II軸軸承的校核初選滾動軸承為32317型,尺寸為?;绢~定載荷Cr: 180kNe=0.29 Y=2.16.2.1計算軸承支反力合成支反力 6.2.2軸承的派生軸向力 6.2.3軸承所受的軸向載荷因 6.2.4軸承的當量動載荷 , , 6.2.5軸承壽命因,故按計算查得, 6.3III軸軸承的校核初選滾動軸承為32022型,其尺寸為。e=0.43 Y=1.4基本額定載荷Cr: 245kN6.3.1計算軸承支反力合成支反力 6.3.2軸承的派生軸向力 6.3.3軸承所受的軸向載荷因 6.3.4軸承的當量動載荷 , , 6.3.5軸承壽命因,故按計算 查得, 6.4IV軸軸承的校核初選滾動軸承為32034型,其尺寸為。e=0.44 Y=1.4基本額定載荷Cr: 520kN6.4.1計算軸承支反力合成支反力 6.4.2軸承的派生軸向力 6.4.3軸承所受的軸向載荷因 6.4.4軸承的當量動載荷 , , 6.4.5軸承壽命因,故按計算 查得, 6.5V軸軸承的校核初選滾動軸承為23044型,其尺寸為。基本額定載荷Cr: 760kN6.5.1計算軸承支反力合成支反力 6.5.2軸承的派生軸向力 6.5.3軸承所受的軸向載荷因 6.5.4軸承的當量動載荷 , , 6.5.5軸承壽命因,故按計算 查得, 7.同步齒輪減速箱鍵的校核7.1I軸鍵的校核I軸的伸出軸,選用圓頭普通平鍵(C型),b=18mm,h=11mm,L=125mm,I軸傳遞的扭矩T=676940Nmm.當鍵用45鋼制造時,主要失效形式為壓潰,通常只進行擠壓強度計算., 合格7.2II軸健的校核II軸的鍵用于齒輪和軸的聯(lián)接,軸徑為,選用選用圓頭普通平鍵(C型),b=25mm,h=14mm,L=90mm,II軸傳遞的扭矩T=2509780Nmm.7.3III軸健的校核III軸的鍵用于齒輪和軸的聯(lián)接,軸徑為,選用選用圓頭普通平鍵(C型),b=32mm,h=18mm,L=125mm,II軸傳遞的扭矩T=8072570Nmm.采用雙鍵聯(lián)接。成對稱布置,考慮到制造誤差使鍵上載荷分布不均,按1.5個鍵計算。合格7.4IV軸健的校核IV軸的鍵用于齒輪和軸的聯(lián)接,鍵1軸徑為,選用普通平鍵(B型),b=45mm,h=25mm,L=160mm,II軸傳遞的扭矩T=28054080Nmm.采用雙鍵聯(lián)接。成對稱布置,考慮到制造誤差使鍵上載荷分布不均,按1.5個鍵計算。合格鍵2軸徑為,選用選用圓頭普通平鍵(C型),b=45mm,h=25mm,L=250mm,II軸傳遞的扭矩T=28054080Nmm.采用雙鍵聯(lián)接。成對稱布置,考慮到制造誤差使鍵上載荷分布不均,按1.5個鍵計算。合格7.5V軸鍵的校核V軸的鍵用于齒輪和軸的聯(lián)接,軸徑為,選用選用普通平鍵(B型),b=50mm,h=28mm,L=250mm,II軸傳遞的扭矩T=66668550Nmm.采用雙鍵聯(lián)接。成對稱布置,考慮到制造誤差使鍵上載荷分布不均,按1.5個鍵計算。合格8.同步齒輪減速箱箱體及附件設計計算8.1箱體設計8.1.1箱體結構設計箱體是減速器的重要組成部件。它是傳動零件的基座,應具有足夠的強度和剛度。由于本設計中沖擊載荷不大,箱體采用灰鑄鐵鑄造箱體。為了便于軸系零件的安裝和拆卸,箱體制成沿軸心線水平剖分式。上箱蓋和下箱座用普通螺栓聯(lián)接成一整體。軸承座的聯(lián)接螺栓應盡量靠近軸承座孔,座旁的凸臺應有足夠的承托面,并保證旋緊螺栓時需要的扳手空間。為了保證箱體有足夠的剛度,在軸承座附近加支承肋。為了保證減速器安置在基座的穩(wěn)定性,并盡可能減少箱體底座平面的機械加工面積。8.2減速器附件為了保證減速器的正常工作,除了對齒輪、軸、軸承組合和箱體的結構設計應予足夠的重視外,還應考慮到為減速器潤滑油池油池注油、排油、檢查油面高度、檢修折裝時的上下箱的精確定位、吊運等輔助零部件的合理選擇和設計。8.2.1檢查孔及其蓋板為了檢查傳動零件的嚙合情況、接觸斑點、側隙,并向箱體內(nèi)注入潤滑油,應在箱體的適當位置設置檢查孔。其大小應允許將手伸入箱內(nèi),以便檢查齒輪嚙合情況。8.2.2通氣器減速器工作時,箱體內(nèi)溫度升高,氣體膨脹,壓力增大,為使箱內(nèi)受熱膨脹的空氣自由排出,以保證箱體內(nèi)外壓力平衡,通常在箱體頂部裝設通氣器。設計中采用的通氣器結構有濾網(wǎng),用于工作環(huán)境多塵的場合,防塵效果較好。8.2.3軸承蓋和密封裝置為了固定軸系部件的軸向位置并承受軸向載荷,軸承座孔兩端軸承蓋封閉。軸承蓋有凸緣式和嵌入式兩種。設計中采用凸緣式軸承蓋,優(yōu)點是拆裝、調(diào)整軸承比較方便。在軸伸處的軸承蓋是透蓋,透蓋中裝有密封裝置。8.2.4定位銷 為了精確地加工軸承座孔,并保證每次拆裝后軸承座的上下半孔始終保持加工時的位置精度,應在精加工軸承座孔前,在上箱蓋和下箱座的聯(lián)接凸緣上配裝定位銷,并呈對稱布置以加強定位效果。8.2.5油面指示器為了檢查減速器內(nèi)油池油面的高度,以便經(jīng)常保證油池內(nèi)有適當?shù)挠土恳话阍谙潴w便于觀察、油面較穩(wěn)定的部位,裝設油面指示器。設計中采用油標尺。8.2.6放油開關換油時,為了排出污油和清洗劑,應在箱體底部、油池的最低位置處開設放油孔,平時放油孔有帶有管螺紋的龍頭堵住。8.2.7起吊裝置當減速器的質(zhì)量超過25KG時,為了便于搬運,常需在箱體上設置起吊裝置。設計中上箱蓋設有兩個吊耳,下箱座焊接有六個吊鉤。9機架及成型裝置的設計計算9.1型輥軸的設計9.1.1選擇軸的材料 選用45號鋼,調(diào)質(zhì)處理。9.1.2初步估算軸的的直徑 取軸徑為280mm9.1.3軸上零部件的選擇和軸的結構設計9131初步選擇滾動軸承根據(jù)軸的受力,選取20000型調(diào)心滾子軸承,為了便于軸承的裝配,取裝軸承處的直徑。初選滾動軸承為23072型,其尺寸為。9132根據(jù)軸向定位的要求確定軸的各段直徑和長度軸段安裝聯(lián)軸器,取,。軸段安裝軸承蓋。取軸段直徑, 。軸段加工螺紋M340,長度23mm.IV軸段安裝軸承,取軸段直徑,V段安裝軸承內(nèi)端蓋,取軸段直徑,。VI,VII段安裝輥心,便于結構考慮,VI段軸徑略大于VII段,取軸段直徑, , , 。VIII段安裝軸承內(nèi)端蓋,取軸段直徑,。IX軸段安裝軸承,取軸段直徑,。9.2輥心的設計9.2.1選擇輥心的材料選用碳素鑄鋼材料,強度和加工性良好。9.2.2輥心結構設計 輥心鑄成六邊形結構,便于型板的安裝和更換。9.3型板的設計9.3.1型板材料的選擇由于成型壓力大,球窩的接觸線磨損大,選用15Cr3Mo材料。持久強度較高。9.3.2型板結構的設計輥輪的輥面分成六塊型板,每一塊用螺釘固定在輥心上,由于球窩的接觸線磨損較大,所以球窩交錯排列。這樣有利于提高輥面的利用率,并且可以減少物料在輥面上非工作“突臺區(qū)”產(chǎn)生的峰壓。由前計算可得:輥子沿周向布排球窩數(shù):=54輥子沿寬度方向可布排球窩:=10.01 圓整取10排輥子寬度:55.59+50+70+10=630mm單塊型板的球窩布排沿周向是9個,布10排。10 液壓加載裝置的選型選用UZ系列微型液壓泵站,油箱容積20L,最大壓力200MPa。結論此次畢業(yè)設計歷時近三個多月的時間,設計的主要內(nèi)容是工業(yè)對輥成型機的整機設計。GD1146/90型對輥成型機,基本上可以滿足年產(chǎn)10萬噸的要求。該機型具有剛性好、效率高、操作靈活等特點。此次設計對輥成型機,主要有以下幾方面的優(yōu)點:1由于采用了安全聯(lián)軸器,可以避免成型機在工作時由于物料(粉煤)帶有的小件鐵器等堅硬物進入輥輪嚙合區(qū)而阻止輥輪的轉動。所以設計的聯(lián)軸器具有退讓和安全保護的功能。2采用方形軸承座。對于固定對輥組件,其軸承座由定位平衡固定在機架的上、下端架之間;對于活動對輥組件,其軸承座可以沿上、下端架上的導向平鍵平移。在活動對輥組件有液壓加載裝置,可以提高成型力,并且在有較硬的鐵器物質(zhì)或其他物質(zhì)進入輥輪間時可以避讓,以免損壞對輥組件。3本成型機采用自重加料裝置。在指導老師的悉心指導下,我不僅完成了設計任務,對成型機的成型原理有了更深的了解,而且還學到了很多書本上沒有的知識,拓寬了自己的知識面。另外還提高了綜合運用知識的能力,為將來工作打下了扎實的基礎。參考文獻1.吳宗澤 機械設計手冊上冊 北京:機械工業(yè)出版社 2002.12.吳宗澤 機械設計手冊下冊 北京:機械工業(yè)出版社 2002.13.王洪欣 機械設計工程學I 徐州:中國礦業(yè)大學出版社 2001.1 4.唐大放 機械設計工程學 徐州:中國礦業(yè)大學出版社 2001.15.蔡春源 新編機械設計手冊 遼寧:科學技術出版社 1993.16.黎啟柏 液壓元件手冊北京:冶金工業(yè)出版社機械工業(yè)出版社1999.127.張展 機械設計通用手冊 北京:中國勞動出版社 1994.18.王旭 機械設計課程設計 北京:機械工業(yè)出版社 2003.89.孫德志機械設計基礎課程設計北京:科學出版社200610.機械工程手冊電機工程手冊編輯委員會機械工程手冊(專用機械卷)北京:機械工業(yè)出版社1997.911.機械工程手冊電機工程手冊編輯委員會機械工程手冊(機械零部件設計)北京:機械工業(yè)出版社1997.912.成大先機械設計手冊(潤滑與密封)北京:化學工業(yè)出版社2004.113.張利平液壓站設計與使用北京:海洋出版社200414.成大先機械設計手冊(減速器、電機與電器)北京:化學工業(yè)出版社2004.115.成大先機械設計手冊(液壓傳動)北京:化學工業(yè)出版社2004.116范祖堯現(xiàn)代機械設備設計手冊北京:機械工業(yè)出版社,199617.梁庚煌輸送機械手冊(第2冊) 北京:化學工業(yè)出版社,198318.中國農(nóng)業(yè)機械化科學研究院實用機械設計手冊北京:中國農(nóng)業(yè)機械出版社,198519.Bergendshl.H.-G:Kugellager-Zeitschrift.Nr.199020.Rieschel.H.:ZechK:Phosphorus & Potassium.Sept./OK1.198121.Pietsch.W:International Fertilizer Development Center. Workshop Proceedings. Cuatemala City.OK1.1989致謝此次畢業(yè)設計忙碌了三個多月的時間。在此期間,指導老師不辭辛勞為我們悉心指導,使我學到了很多知識。在此,我非常感謝指導老師。 這次的畢業(yè)設計,既鍛煉了我綜合運用所學專業(yè)知識的能力,也讓我學到了很多書本上學不到的知識。此外,我也十分感謝中國礦業(yè)大學以及各位老師四年對我的悉心栽培。使我在畢業(yè)后走向社會能成為一名真正對社會有用之人。附 錄一英文資料及中文翻譯The outline of coal preparation and Economics of Coal CleaningAbstractCoal preparation, simply put, is the conversion of run-of-mine (ROM) coal (or coal as it leaves the mine complete with impurities and prior to any processing) into a marketable product. Originally, coal preparation began as a line of equipment-crushers, feeders, screens, etc.-to control the size of the mined coal. Perhaps the easiest way to understand the evolution of coal cleaning and to understand the evolution of coal cleaning and to understand the variations found within the industry is to become familiar with the levels of coal preparation.Level 0 processing is the mining and shipping of ROM coal.The product of Level 1 processing is commonly termed raw coal.Level 2 processing involves the cleaning of the coarser sizes of raw coal (or coal which is larger than 1/2”).The coal finer than 1/2” would be added to the cleaned coal (the plus 1/2mm coal) or sent elsewhere.Level 3 processing extends the cleaning of the raw coal to the intermediate size raw coal-1/2” by 1/2mm.The minus 1/2mm material is added to the cleaned coal (the plus 1/2mm coal) or sent elsewhere.Level 4 processing extends the cleaning to include the minus 1/2mm raw coal.The feed to the coal preparation plant is then raw coal from Level 1 processing. Coals impurities are numerous, but by far the largest have specific weights greater than coal. The raw coal is thus characterized by partitioning the very heterogeneous coal into relatively homogeneous subpopulations on the basis of size and specific gravity.The separation unit operations normally process water/raw coal slurries, thus the term Coal Washing. Coal preparation is the quality control arm of the coal industry. It is an integral part of the coal business. 2. The Cumulative Float Curve-a plot of the cumulative float weight percent versus the cumulative float ash percent.The outline of coal preparationCoal preparation, simply put, is the conversion of run-of-mine (ROM) coal (or coal as it leaves the mine complete with impurities and prior to any processing) into a marketable product. (A quality-controlled substance whose composition meets the ever-increasing specifications required for its use whether its combustion, liquefaction, gasification or carbonization.)The coal we mine today represents the deposition of phytogenic material 50 to 350 million years ago. The resulting horizontal strata, what we call coal seams, will vary in thickness from several inches to several hundred feet. They are usually separated by varying thicknesses of sedimentary rocks such as shales, clays, sandstones and, sometimes, even limestone, OR-when combined with coal-what are known as impurities in terms of preparation.Originally, coal preparation began as a line of equipment-crushers, feeders, screens, etc.-to control the size of the mined coal. Among the product line was the conveying picking table which was used to visually inspect the ROM coal so that obvious impurities could be removed manually. Thousands of men, women and children performed this unfulfilling work until mechanization replaced it withmore modern coal cleaning equipment.Generally speaking, this coal cleaning equipment was developed for British and European mines because their coal was of much greater value per ton than in the U.S. Its value reflected its cost of mining-which was high because the seams were more difficult to mine compared with American coal seams.However, although U.S. seams are among the easiest in the world to mine, preparation took on a new significance with the unionization of mines during the New Deal. A rapidly rising demand for machines to mine coal both underground and above ground was created; machines which were not and are not selective and which mine whole seams, including partings and some roof and floor mater ials.Mechanical mining meant mechanical cleaning.Perhaps the easiest way to understand the evolution of coal cleaning and to understand the evolution of coal cleaning and to understand the variations found within the industry is to become familiar with the levels of coal preparation.Each level is indicative of the intensity of the work performed on run-of-mine coal and each is an extension of the previous level.Level 0 processing is the mining and shipping of ROM coal.Level 1 processing combines top-size control by crushing, with some removal of undesirable constituents such as tramp iron, timber and perhaps strong rocks. The product of Level 1 processing is commonly termed raw coal.Level 2 processing involves the cleaning of the coarser sizes of raw coal (or coal which is larger than 1/2”).The coal finer than 1/2” would be added to the cleaned coal (the plus 1/2mm coal) or sent elsewhere.Level 3 processing extends the cleaning of the raw coal to the intermediate size raw coal-1/2” by 1/2mm.The minus 1/2mm material is added to the cleaned coal (the plus 1/2mm coal) or sent elsewhere.Level 4 processing extends the cleaning to include the minus 1/2mm raw coal.Developing the appropriate circuitry for processing raw coals at Levels 2,3 and 4 involves four areas-characterization, liberation, separation and disposition.Characterization is the systematic examination of the ROM coal in order to determine the make up of the feed to the coal preparation plant. A coal processing engineer will develop a flowsheet of the unit operations required to achieve the desired preparation level.Liberation is the creation of individual particles whose composition are predominantly coal or refuse. This is achieved by size reduction or the crushing of the justmined coal to a particular top size as determined by the characterization study. The feed to the coal preparation plant is then raw coal from Level 1 processing. Unfortunately, particles containing both coal and refuseknown as middlings-are also createdSeparation is, simply, the dividing of the particles into their appropriate groups-coal, refuse and middlings. Coals impurities are numerous, but by far the largest have specific weights greater than coal. The dominant method for separating the liberated coal is by gravity concentration which relies on two physical property differences-size and specific gravity. The raw coal is thus characterized by partitioning the very heterogeneous coal into relatively homogeneous subpopulations on the basis of size and specific gravity.Disposition is the cleaning up of the various streams.The separation unit operations normally process water/raw coal slurries, thus the term Coal Washing. The predominant disposition operation is the dewatering (separating the liquid and the solis ) of the various atre ams after the separations have been made. The second most important disposition operation is refuse disposal, followed by other environmental control operations.Coal preparation is the quality control arm of the coal industry. It is an integral part of the coal business. WashabilityWashability studies are conducted primarily to determine how much coal can be produced at a given specific gravity and at what separation difficulty and size. The importance of the size analysis is perhaps more clear if you think of the cleaning process as removing impurities form individual pieces of coal, rather than in terms of tons of coal. As the individual pieces get smaller they become harderand more costlyto clean. Generally , the testing procedures of a washability study begin by obtaining a representative sample of the material already reduced to a designated top size, Next, the sample is sized at several different screen apertures, with each fraction held separately for further evaluation. A typical size analysis for a feed material is shown in Table 1. The table presents the percent of total weight, as well as an analysis of ash, sulfur content and Btu of each fraction, both individually and cumulatively.Then the material of each size fraction undergoes a float-sink test in liquids of pre-selected, carefully controlled specific gravities, beginning with the lowest.The float material from each specific gravity bath is then weighed and sink material is tested in the next heavier bath.The procedure is repeated until the desired number of float-sink result for the fraction in Table1 is given in Table 2.Since wider ranges are treated commercially, composite results are usually made by properly combining the individual size fraction results. A typical composite result of the material (Level 3 processing)in Table 1 is shown in Table3.This type of data is then used to develop washability curves-curves as unique to the coal as fingerprints to a hand-which describe the various characteristics of the coal.For example, Figure 1 shows three curves, generated from the data in Table 3, which are generally employed:1. The Yield Curve-a plot of the cumulative float weight percent versus specific gravity;2. The Cumulative Float Curve-a plot of the cumulative float weight percent versus the cumulative float ash percent;3. The Cumulative Sink Curve-a plot of the cumulative sink weight percent versus the cumulative sink ash percent.The theoretical cleaning capability can be determined from the curves. For example, if it is desired to produce a 28m product of 10% ash, the theoretical product quantity will be 75.8% of the feed. The separation must be made at a specific gravity of 1.665 and the rejects should analyze 82.1% ash.Economics of Coal CleaningAbstractA second stage of evaluation is then based on user costs deriving from coal properties. Losses of yield in cleaning represent the biggest item contributing to total cleaning costs because the size, and hence the capital cost of a cleaning plant, is based on the throughput capacity for raw coal .It is generally accepted that capital costs reduce with increases in plant size, although not all the items comprising a cleaning plant are directly units .For example ,the sizes of raw coal storage and handling units ,and the sizes of cleaned coal bunkers and loading facilities ,are often determined by the needs for strategic stockpiles or the requirements of the transportation system .Economic analysis is also greatly influenced by the relationship of the coal producer to the coal user .At least three different considerations may arise:(1) cleaned coal is produced for sale under comparatively short term contracts (1 to 3 years) in a competitive market, (2) coal is produced on long-term (7years and more) supply contracts, and (3) coal production and cleaning forms part of a totally integrated operation in which coal is mined and used by a single industrial undertaking. The elements of the cost of coal cleaning comprise fixed costs arising from capital charges, and fixed or variable costs arising from plant operation. For a given annual production, capital costs are highly dependent upon raw coal quality as determined by ash content and size consist. The former determines the yield of clean coal, and since plant capacities are dictated by raw coal throughputs, this factor has the major influence on capital requirements. The average yield of current American coal cleaning plants is 71%. Economics of Coal CleaningIn recent times modern wash plants in the United States has been standing idle because the premium on price necessary to cover cleaning costs could not be recovered in a slack coal market tend to evaluate their coal purchases by methods that indicate minimum costs in energy terms (i.e., delivered cost per million Btu). A second stage of evaluation is then based on user costs deriving from coal properties. These can be complex and include such items as ash content, ash composition and fusion temperatures, fixed carbon (coke making), sulfur, and crushing and pulverizing characteristics. Considerations of these factors may modify the primary evaluation ,but as a general rule will justify a premium for cleaning only if substantial cost savings in utilization will result .However, calorific value is not a primary control function in coal cleaning .It has an approximately linear relationship to ash and moisture contents. But after gross rock dilution in a raw coal has been removed, the yield in terms of thermal efficiency of recovery with ash content becomes nonlinear and an increasing penalty in thermal recovery for unit decreasing in ash content becomes the rule. Losses of yield in cleaning represent the biggest item contributing to total cleaning costs because the size, and hence the capital cost of a cleaning plant, is based on the throughput capacity for raw coal .It is generally accepted that capital costs reduce with increases in plant size, although not all the items comprising a cleaning plant are directly units .For example ,the sizes of raw coal storage and handling units ,and the sizes of cleaned coal bunkers and loading facilities ,are often determined by the needs for strategic stockpiles or the requirements of the transportation system .Economic analysis is also greatly influenced by the relationship of the coal producer to the coal user .At least three different considerations may arise:(1) cleaned coal is produced for sale under comparatively short term contracts (1 to 3 years) in a competitive market, (2) coal is produced on long-term (7years and more) supply contracts, and (3) coal production and cleaning forms part of a totally integrated operation in which coal is mined and used by a single industrial undertaking. Types (1) and (2) are most representative of past and present practices for metallurgical and thermal coals. Type (3) may apply following the current reorganization and restructuring of the coal industry and the growth of large coal conversion plants and mine-mouth generating stations.Additional complexity arises from tougher environmental regulation in which coal cleaning is only one aspect of control technology available for limited emissions of sulfur oxides and particulates, including hazardous trace elements. It has already been noted that environmental regulation relating to the operation of cleaning plants liquid effluents, fugitive dust, and noisehave resulted in significant increases in capital and operating costs. The future growth of coal cleaning in the United States will be largely determined by the attitude of the electric utilities industry and the extent to which utilities companies enter into full or joint ownership of the means of coal production. This may result in decisive changes in the way in which economic evaluation of new coal projects, including cleaning, are made .The financial yardsticks applied, until very recent times, for determining the economic worth of coal cleaning were relatively simple measures .The quality, tonnage, and expected market price of raw coal were compared with similar parameters for cleaning were then estimated and added to the basic production costs of ROM coal .The difference between anticipated gross productions costs and forecast selling prices because the basic for applying various accounting devices accounting devices to determine the balance of economic advantage .Usually , a discounted cash flow (DCF ) analysis enabled calculation of return on investment (ROI ) over periods of about 10 to 15 years for the different options. This exercise was principally of concern to coal-producing companies because they carried the fiscal responsibility for the decision to clean or not to clean. As a general rule of thumb, a decision to proceed with cleaning depended on a DCF-ROI of at least 15%per year, and more commonly, 20%. If the case for cleaning was a foregone necessity, because of the markets requirements, the analysis was used to calculate a selling price that would produce the necessary ROI. These rules had worked well in an industry that, although still important and substantial, had been declining.The utilities employ different accounting principles from the DCF-ROI type of evaluation and they employ different funding methods, particularly as regards debt/equity ratios. Traditionally, their payback periods are substantially longer, 3o to 40 years for fossil-fired plant. These differences can result in substantial changes in the fixed capital largest element in coal cleaning costs, being greater than 50% at all levels of preparation. Although a number of cost studies are in progress, the full impact of these changes and their wider importance for coal cleaning cannot be assessed at the present time.The elements of the cost of coal cleaning comprise fixed costs arising from capital charges, and fixed or variable costs arising from plant operation. Capital charges are determined by the depreciation of costs incurred in land acquisition and preparation; design procurement and construction; provision of utilities and transportation and communications facilities; taxes; working capital; and interest charges. They are a fixed-cost burden unaffected by actual plant throughputs. Operating expenses include salaries, wages, power costs, water costs, and productive supplies, including fuels, refuse, and waste disposal. This category may include fixed costs independent of plant throughput (e. g., salaries) or variable costs tied directly to throughput (e. g., productive supplies).For a given annual production, capital costs are highly dependent upon raw coal quality as determined by ash content and size consist. The former determines the yield of clean coal, and since plant capacities are dictated by raw coal throughputs, this factor has the major influence on capital requirements. The average yield of current American coal cleaning plants is 71%. The most expensive items of capital equipment to provide and operate are required for handling fine and ultrafine coal sizes (i.e., froth flotation vacuum filters, centrifuges, water clarification, and thermal drying). Cleaning costs are therefore highly sensitive to the quantity of sizes smaller than 1/4 in. in the feed.Capital and operating costs are also sensitive to plant utilization and the system of working. Plant practices vary from single-shift, 5-day-week operation to continuous-shift, 7-day operation. The latter normally allows one to three shifts per week downtime planned maintenance. It is clear that, for a given annual production, plant sizes and hence capital costs are related to the working practice adopted.選煤概述和煤的可選性摘要煤炭加工選煤概述簡單說來,選煤就是把原煤(即開采后未經(jīng)加工含有各種雜質(zhì)的煤)。商品煤是具有一定質(zhì)量規(guī)格的產(chǎn)品,它能滿足燃燒,液化氣化等方面所不斷提高的技術要求?,F(xiàn)在開采的煤是五千萬到三億五千萬年前的植物沉積而成,所形成的水平層狀物稱之為煤層,厚度不一,從數(shù)英寸到數(shù)百英尺。煤層中經(jīng)常夾雜著厚度不等的頁巖,粘土砂巖,有時還夾雜石灰?guī)r等沉積巖。從選煤的角度來說,這些和煤結合在一起的夾雜物稱之為雜質(zhì)。三級加工選別中等粒度(1/2英寸1/2毫米)的原料煤,小于1/2毫米粒級的則歸入精煤(大于1/2毫米)或送往他處。原煤可選性的研究主要是為了決定在某一比重下可能獲得的產(chǎn)品數(shù)量和洗選的難以程度,并確定入洗煤的粒度。如果把選煤看成是從一塊塊的煤中除區(qū)雜質(zhì),而不是根據(jù)成噸的煤去考慮問題,就能比較清楚的理解粒度分析的重要性。粒度越小,選煤難度越大,成本越高。在可選性研究的試驗程序開始之前,通常是先取出經(jīng)破碎達到規(guī)定粒度上限的煤樣,然后用各種篩子進行篩分。各粒級產(chǎn)物要分別存放,以便進行可選性評定。表1所示為入料粒度的典型分析。表中列出了各粒級產(chǎn)物的重量百分數(shù)灰分硫分和發(fā)熱量,分本級和累計兩項。先配好重液,準確調(diào)節(jié)其比重,然后對各粒級產(chǎn)物進行浮沉試驗,從比重最小的重液開始。每一級重液中的浮起物要稱記重量,下沉物移入較高比重的重液,依次進行,直到獲得個級比重物為止。表2為表1中產(chǎn)物的浮沉實驗結果。由于工業(yè)上處理的粒級范圍較廣,經(jīng)常把某些粒級浮沉試驗結果加以適當組合,形成綜合結果。近年來,由于支付選煤成本所需的額外費用不能在蕭條的煤炭市場上回收,美國的現(xiàn)代化選煤廠一直處于停產(chǎn)狀態(tài)。在競爭性的市場上,用戶往往首先根據(jù)按能量計算最低價格(即每百萬英熱單位包括交貨費用在內(nèi)的價格)的方法判斷他們是否要購買。其次是判斷按煤的性質(zhì)決定的使用價值。煤的性質(zhì)比較復雜,它包括灰分,灰的組成及熔點,固定碳,硫分,破碎和磨碎特性等各項因素。考慮了這些因素以后,還會改變最初的判斷,但按一般規(guī)律來說,只有在使用中如能明顯地節(jié)約費用,才能認為選煤這項額外費用是合算的。然而,熱值并不是選煤中應加以控制的主要方面。它與灰分和水分呈近似的線性關系,但是在原煤中大塊巖石被揀除后,產(chǎn)率和灰分之間變成非線性關系,一般的規(guī)律是降低灰分就要增加熱值回收率的損失。選煤中的產(chǎn)率損失是影響選煤總成本的最大項。由于選煤廠的規(guī)模乃至基建投資是以處理原煤的能力為基礎的,因此產(chǎn)率損失對投資費產(chǎn)生最直接的影響。雖然構成選煤廠的各個項目并非全部都直接涉及選煤設備的處理能力,但通常人們認為隨著工廠規(guī)模增大,投資費反而減少。按慣例,還本期很長,一個燃煤的廠的還本期為30-40年。關鍵詞:煤炭加工 選煤 原煤可選性簡單說來,選煤就是把原煤(即開采后未經(jīng)加工含有各種雜質(zhì)的煤)。商品煤是具有一定質(zhì)量規(guī)格的產(chǎn)品,它能滿足燃燒,液化氣化等方面所不斷提高的技術要求?,F(xiàn)在開采的煤是五千萬到三億五千萬年前的植物沉積而成,所形成的水平層狀物稱之為煤層,厚度不一,從數(shù)英寸到數(shù)百英尺。煤層中經(jīng)常夾雜著厚度不等的頁巖,粘土砂巖,有時還夾雜石灰?guī)r等沉積巖。從選煤的角度來說,這些和煤結合在一起的夾雜物稱之為
收藏