帶輪的沖壓工藝與模具設計【三維UG工件圖】【含51張圖紙】
喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有請放心下載,原稿可自行編輯修改=【QQ:1304139763可咨詢交流】喜歡就充值下載吧。喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有請放心下載,原稿可自行編輯修改=【QQ:1304139763可咨詢交流】喜歡就充值下載吧。喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有請放心下載,原稿可自行編輯修改=【QQ:1304139763可咨詢交流】喜歡就充值下載吧。
本科畢業(yè)設計外文文獻及譯文文獻、資料題目:Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries文獻、資料來源:材料科學與工程雜志文獻、資料發(fā)表(出版)日期:2007.12院 (部): 材料科學與工程學院專 業(yè): 材料成型及控制工程班 級: 成型054姓 名: 李瑜學 號: 2005101265指導教師: 任國成翻譯日期: 2009.6.15山東建筑大學畢業(yè)設計外文文獻及譯文中文譯文等通道轉(zhuǎn)角擠壓工藝在電子和航空航天行業(yè)的推廣和應用摘要:促進等通道轉(zhuǎn)角擠壓發(fā)展以及在實驗室的探索階段取得進展,等徑角擠壓在這兩個領(lǐng)域是至關(guān)重要的:(一)模具設計、處理設計和規(guī)模擴大(工具/加工設計與推廣);(二)發(fā)展新亞微米晶產(chǎn)品。這兩個目標在霍尼韋爾公司得到了實現(xiàn)。第一種情況是利用等徑角擠壓在電子工業(yè)從單相合金生產(chǎn)濺射靶材成功的商業(yè)化。在實際中的應用(毛坯尺寸)明顯多于那些文獻報道。其他的重合金鋁材料在航空航天領(lǐng)域應用的描述則是以增加拉伸強度、高周疲勞和韌性為目的。在這些合金中,更好的了解塑性變形和降水機制之間的相互作用可達到最佳的性能。2007年埃爾塞維爾B.訴保留所有權(quán)利1 導言過去10年,劇烈塑性變形(SPD)技術(shù)已成為熱切研究的焦點,因為他們可以用尺寸在50到500納米之間亞微米晶粒研究生產(chǎn)金屬材料 。一個有前途的劇烈塑性變形(SPD)方法是等通道轉(zhuǎn)角擠壓( 等徑角擠壓 )工藝。它可以通過簡單的剪切引起的劇烈塑性變形產(chǎn)生出大量的亞微米晶粒材料。到目前為止,研究已在亞微米晶材料的的表征紋理、結(jié)構(gòu)和力學性能,以及等徑角擠壓影響的主要參數(shù)和畸變退火方面取得穩(wěn)步進展。然而,盡管有豐富的文獻資料,但在工程和商業(yè)化方面的問題直到最近才討論,且很少有實際應用的報道。絕大多數(shù)研究者繼續(xù)使用小長圓筒形或方形坯料。 已經(jīng)有一些擴大規(guī)模的鋼坯的嘗試,但還沒有成功的商業(yè)化的報告。本文綜述了,霍尼韋爾公司在模具設計,推廣和商業(yè)化等徑角擠壓平板鋼坯進行獲得的成果。選定的例子表明,該技術(shù)可以以一個或多個下列方式進入市場: (一) 提供全面降低成本以針對標準制造或設計,(二)提供優(yōu)異的產(chǎn)品性能,(三)答復一個未得到滿足的需求。第一個涉及等徑角擠壓產(chǎn)品的例子是使用微米與亞微米尺寸晶粒的高純度鋁、銅和鈦制造用于制造邏輯和存儲元件濺射靶材。另外兩個例子是關(guān)于中等和重合金鋁材料在航空航天和運輸領(lǐng)域的應用。特別注意的是影響等徑角擠壓的結(jié)構(gòu)和性能的單相銅和鋁,尤其是鋁在合金成分的增加從一個非常低的水平(如濺射靶材)到一個更高的水(如在商業(yè)合金為航空航天)。有人認為,新的機制和隨著新的塑性變形之間的相互作用和形變熱處理時的相變使合金水平的提高,更多合金應用機會將出現(xiàn)。2規(guī)模和工藝設計霍尼韋爾公司的重點是,從歷史上看, 等徑角擠壓平板產(chǎn)品,這是第一次介紹了編號。 38 在這種情況下(圖1 ),一個典型的坯料形狀的特點是厚度為a,寬度為b和長度c,b c。通常情況下,尺寸C和B是平等的,允許使用相同的工具進行多道次處理(在 90 之間輪換通過)。加工特性之一是等徑角擠壓平板和長期鋼坯相似。不過,通常用于平板鋼坯的軸允許 90鋼坯輪換垂直擠壓(圖1 中z軸),鑒于長期的產(chǎn)品,它是平行的擠壓軸。在規(guī)模增長方面,有兩個因素在起作用:(i)模具設計,及( ii )優(yōu)化等徑角擠壓變形模式。2.1 .模具設計 從生產(chǎn)角度看,主要的驅(qū)動程序工具設計包括安全,成本和生產(chǎn)力。2.1.1 .安全性和成本如果使用常規(guī)低成本工具鋼,最大的問題是沖床潛在的斷裂/屈曲。對于給定的材料,沖床壓力p1必須大大低于沖壓材料的屈服強度。沖壓力為其中p是在出口的第一通道的壓力,K為材料剪切流動應力m是塑料的摩擦系數(shù)F是該地區(qū)固定死墻壁A是鋼坯橫截面積對于該工具本身,最大的沖床壓力p1和通道壁的n行動結(jié)束時的入口通道。同樣地顯示在 30 ,低摩擦情況(m 0.25 )因此,最好的減少模具/沖壓壓力的辦法是: (一)限制比例的c / a6-10(二)減少兩個通道的摩擦。有兩個相應的策略:選擇有效的潤滑劑和使通道壁可動。這是利用單位平板等徑角擠壓鋼坯相對長期的鋼坯的一個明顯優(yōu)勢,從設備和設計是可移動的墻壁通道沿線theentrance不需要平板產(chǎn)品。這是因為平板產(chǎn)品中ab,而長期產(chǎn)品中a = b。因此P1和n在平板產(chǎn)品中是較小的,公式( 2 )和公式( 3 )可近似化簡為建議在平板和條狀的產(chǎn)品中增加一個可移動底部出口通道,因為底部是潤滑油原子的退出通道。2.1.2 .生產(chǎn)率影響生產(chǎn)率的兩個重要的因素是加工速度和鋼坯彈射。作為具有相當?shù)捻g性的材料,加工速度不是一個限制因素,它可以足夠高( 5-10毫米/秒)。鋼坯彈射具有更為復雜的問題,特別是對長條圓柱形坯料。在平板鋼坯中,在可移動的墻底部退出渠道安裝的額外液壓缸提供了一個有效和簡單的解決辦法。2.2 優(yōu)化等徑角擠壓有兩個層次的單一優(yōu)化和多道優(yōu)化 等徑角擠壓。2.2.1.單程優(yōu)化某種程度的簡單剪切變形應盡可能高的一種有效的完善的組織。這主要取決于摩擦條件和幾何渠道,有兩個臨界參數(shù)改變幾何渠道:兩個通道之間的夾角2及通道相交的形狀。通常情況下,通常情況下,渠道都以尖角(沒有半徑)或圓角的交叉。滑移線解決方案和有限元模型揭示在摩擦和(或)圓角渠道的情況下存在扇形變形區(qū)。在這種情況下,簡單剪切是重新分配沿著三個不同的方向。而且即使是無摩擦的條件和尖角彎道,290時死金屬區(qū)存在于通道的角落。因此,工具角2 = 90時,急轉(zhuǎn)彎道和附近摩擦條件是實現(xiàn)沿=2一個方向簡單有效剪切的最佳的條件。最重要的問題是同時采取行動消除有高壓縮壓力的沿底部墻壁和密集支路的摩擦。隨著底部墻壁的移動, 滑移線分析表明扇形角度可以減小。由于先進的模具設計和潤滑油條件,霍尼韋爾模具運作良好。2.2.2 .多道處理多道處理的兩個主要參數(shù)是變形路線(每次變形后一序列方坯的輪換,)和變形總數(shù)的積累(積累株),平板鋼坯,定義的四個基本路線,A、B(或BA )、C和D(或BC)仍然是類似的長條鋼坯除如前所述的旋轉(zhuǎn)軸。 2.3 .規(guī)模擴大的努力基于上述考慮,霍尼韋爾公司開始了擴大等徑角擠壓規(guī)模的努力,在1997年建造的第一條模具生產(chǎn)線。今天,一些正常使用鋁銅和純鈦大規(guī)模的鋼坯模組使用1000和4000噸的壓力機(見圖2 ) 。其中大部分模具已在使用中,6年中每周工作。大眾中最大的等徑角擠壓方坯是三十二點七公斤的Al合金,最近,110公斤的銅和銅合金也有了。作為比較,報告的最大等徑角擠壓加工鋁坯模具有6.7千克重獲得渠道角度105 而大眾的用于研究的最典型的10毫米 10毫米 60mmAl鋼坯是0.016千克。 關(guān)于企圖擴大等徑角擠壓過程沒有任何對銅的報告。重要的是, 等徑角擠壓對微觀結(jié)構(gòu),質(zhì)地和性能的影響已經(jīng)在各種規(guī)模的工業(yè)領(lǐng)域得到驗證并將在第2部分介紹。在作者看來,實際生產(chǎn)經(jīng)驗表明, 等徑角擠壓是可擴展的并將開創(chuàng)它的工業(yè)化新時代。3 等徑角擠壓的濺射靶材等徑角擠壓特別適用于高純度材料由于晶粒細化是有效地增強強度,并保持良好的塑性(霍爾佩奇硬化)唯一可用機制,而其他硬化機制都是無效的(析出和硬化處理)或有損于延性(脫位硬化) 。對特定材料和晶體結(jié)構(gòu)而言, 等徑角擠壓can也激活和控制質(zhì)地的硬化。這種辦法對摻雜或低合金鋼材料,如在高純度的銅,鈦和Al 材料或不使用微量元素和低合金中使用制造濺射靶材仍然有效。在本節(jié)中,我們使用電極工業(yè)縮寫, 6N和5N5的純度分別99.9999 和99.9995 。3.1 等徑角擠壓后靶材的微觀結(jié)構(gòu)高純度材料的多道等徑角擠壓結(jié)果存在以下幾個主要影響:(一)形成較好(通常是小于20微米)微觀結(jié)構(gòu)取決于開始的晶粒尺寸; (二)加強結(jié)構(gòu)均勻性; (三)紋理的控制是通過一些通行證,路線和后處理熱處理來實現(xiàn)的 39 ;( 四 )在等徑角擠壓之前通過固溶處理來消除大型階段和沉淀。晶粒尺寸,均勻性和缺乏大型粒子對濺射性能力影響最大。選擇特定結(jié)構(gòu)的關(guān)鍵因素是在靶材制造或使用過程中的熱穩(wěn)定性。下面是一些例子:(一) 對低熔點高純度材料而言,亞微米晶結(jié)構(gòu)通常沒有穩(wěn)定的高功率濺射。但是,在等徑角擠壓之后仍然能得到結(jié)構(gòu)很好和均勻的,而且微米晶粒尺寸較普通結(jié)構(gòu)鍛造或軋制后小3到5倍。這對等徑角擠壓的應用而言是一個非常有趣的領(lǐng)域,由于把重點放在亞微晶材料,因此很少在文獻中強調(diào),。另一個例子 36,37 是一種 5-10微米結(jié)構(gòu)(圖3a )在純度為99.9999 ( 6N )的銅經(jīng)過等徑角擠壓靜態(tài)再結(jié)晶( 225 , 1小時)后 與普通處理典型的50米晶粒尺寸的對比。該EBSD分析表明, 高角度邊界占主導位置(圖3B )。 60 也界證明存在大量的孿晶組織。另一個例子(圖4和5 ) ,高純度99.9995 ( 5N5 ) Al經(jīng)由等徑角擠壓后的平均粒徑約為60-70微米,而而標準處理則是200-300微米。在這情況下,經(jīng)過等徑角擠壓直接觀察室溫下的完全動態(tài)再結(jié)晶。正如文獻 41,42 所述,不僅是應變的積累,而且簡單剪切變形模式也是很重要。在特定的情況下,在如圖4所給的應力水平下對結(jié)構(gòu)的改良來說簡單的剪切是最有效的模式結(jié)構(gòu)。 例如相同的結(jié)構(gòu),發(fā)現(xiàn)5N5鋁經(jīng)過兩次等徑角擠壓后(積累應變2.3 )和軋后減少99 (累積應變4.8 )。這種結(jié)構(gòu)有一個突出特點即熱穩(wěn)定性增強。起作用的因素可能是各向同性的形態(tài),孿晶晶界的低流動性, 結(jié)構(gòu)均勻性及附近紋理的隨機性(見圖3 )。圖5經(jīng)過等徑角擠壓和一般工藝處理5N5鋁, 6N 銅 37 和銅合金之間的晶粒尺寸演變隨退火時間變化的比較。例如,對于等徑角擠壓 6N銅而言,完全靜態(tài)再結(jié)晶發(fā)生在225 C的、退火1 小時和產(chǎn)生了尺寸約為5-8微米的均勻晶粒,而在300 額外的退火1小時后晶粒只是稍微長大至15微米,結(jié)構(gòu)仍然均勻。 相比之下,相同晶粒尺寸6N銅經(jīng)過標準工藝處理( 85 滾動)后在經(jīng)過225 , 1 h和300 退火 1小時后,分別晶粒尺寸由35升至65米。(二) 對高純度鋁,銅而言,添加微量元素(這里定義為元素含量最多為百萬分之2000)是一個進一步完善等徑角擠壓晶粒尺寸和/或通過提高晶粒度和亞顯微結(jié)構(gòu)的熱穩(wěn)定性同時來提高等徑角擠壓 溫度極為有效的技術(shù)。一個顯著的例子是5N5鋁摻雜百萬分之20-30硅含量。超細顆粒的大小由 60微米減少至25微米,遠遠小于類似的應變水平(圖4 )作為推出結(jié)構(gòu)之后的尺寸。簡單的剪切變形模式等徑角擠壓和非單調(diào)D類加載路徑被認為是等徑角擠壓和推出結(jié)構(gòu)的晶粒尺寸之間存在顯著差異的最主要的因素 41,42 。圖。 6顯示了元素性質(zhì)和摻雜數(shù)量對亞微米顆粒6N銅按照路線D經(jīng)過6次等徑角擠壓后的溫度靜態(tài)再結(jié)晶巨大的影響??梢缘玫揭粋€近乎對數(shù)的曲線。特別是銀,錫,鈦影響如此大以致有添加微量的元素有足夠的水平產(chǎn)生穩(wěn)定濺射的亞微米顆粒的結(jié)構(gòu)。(三) 在含有足夠數(shù)量的微量元素或合金的純Al和Cu的的組成部分,在現(xiàn)實應用中亞微晶結(jié)構(gòu)穩(wěn)定濺射是我們追求的靶材。例如一個Al0.5Cu合金亞微米晶結(jié)構(gòu)經(jīng)過等徑角擠壓處理,如圖7所示 36,37 。透射電子顯微鏡( TEM )展示了一個均勻等軸尺寸0.3-0.5微米的微米晶粒(圖7 ) 這對當于常規(guī)過程100個因素的比較。存在著非常細的分散(小于50納米)的第二階段物質(zhì)。3.2 濺射性能等徑角擠壓結(jié)果展示了濺射性能優(yōu)越(具體細節(jié)參考文獻36,37 ) ,其中包括: (一)減少電弧; (二)低水平的粒子和晶圓上缺陷; (三) 改進薄膜厚度均勻性和薄膜的統(tǒng)一性; (四)由于存在較好束直的亞微米顆粒的結(jié)構(gòu)進而進一步提高了覆蓋。3.3 力學性能和指標的設計圖8顯示數(shù)據(jù)是6N銅,含有微量元素的6N Cu,6N Cu,5N5 Al0.5Cu 和 4N5 Ni在室溫下經(jīng)過等徑角擠壓處理后的屈服強度(YS)和極限抗拉強度強度(UTS)。經(jīng)過等徑角擠壓處理后的屈服強度(YS)和極限抗拉強度強度(UTS)要比常規(guī)處理分別高4至10倍和2至3倍。這種效果在屈服強度上最顯著,屈服強度是材料應用的一個重要指標,因為它表示承受永久塑性變形的能力,并可能使工件在濺射靶時發(fā)生彎曲。由圖8可知在6NCu這一組,經(jīng)過等徑角擠壓后微量元素有一個明顯的強化效果,。拉伸伸長率仍然很高: 較亞微晶 Al0.5Cu高出20 ,較亞微晶6N銅高出35-40。高強度的純亞微米晶材料允許使用單片設計,整個靶材作為一個單塊(圖9 ) 。較常規(guī)工藝的指標而言這是一個獨特的設計,其中經(jīng)過靶材材料粘結(jié)或焊接到底板材料制成類似Al 6061 或 CuCr這樣高強度材料。單片設計主要優(yōu)點如下:相比擴散粘結(jié)的設計靶材壽命增加了50 ,因為濺射不再局限于擴散結(jié)合線 36,37 。直接結(jié)果就是增加吞吐量(一些經(jīng)過處理的晶圓每個指標),其他組成部分的壽命和減少停機時間。通過降低成本,多而高風險的擴散焊作業(yè)來簡化制造過程。歸因于等徑角擠壓可以獲得如常規(guī)手段(滾動,繪圖)一樣的高塑性變形的產(chǎn)品。 等徑角擠壓 Al和Cu靶材的最近事態(tài)發(fā)展的是空心陰極磁控( HCM )的靶材。這些靶材成形需要經(jīng)過復雜的等徑角擠壓工藝形成最終直徑約393.7毫米,高度381毫米和厚度12.7-25.4毫米的杯形狀。4 等徑角擠壓鋁合金在航空航天和運輸上的應用隨著加入合金成分的增加,二次相(無論可溶性或不溶性)得數(shù)量也隨之增加,因此便產(chǎn)生了兩個其他可能提高強度的機制: 固熔案和沉淀硬化。等徑角擠壓熱處理對組織和性能額影響變得更加多樣化和更難以預測。對于非熱處理合金晶粒細化在等徑角擠壓仍然是提高強度的主要機制 2,12 。對可熱處理合金而言會產(chǎn)生更有趣的實例。對于一個中等水平的合金,沉淀硬化同晶粒細化一樣有效,目標就是優(yōu)化處理來結(jié)合這兩種效果 13,20-24 。下文所述的一個例子是等徑角擠壓鋁2618合金,主要用于航空及運輸行業(yè)的渦輪增壓器組件。對重合金化而言,通過等徑角擠壓細化組織來提高材料強度相對于其他硬化機制是次要的。然而,經(jīng)過等徑角擠壓處理的噴霧鑄鋁合金的起落架組成部分的韌性可以大大提高 25-29 。4.1 等徑角擠壓鋁2618的渦輪增壓器組件4.1.1 加工 在進行等徑角擠壓前將物質(zhì)狀態(tài)分三組進行了研究:(一)在529 固溶,24 h后,立即用水淬火使所有溶解相溶解。(二)在526 ,固溶20小時之后,經(jīng)沸水淬火然后在200時 , 空冷20小時。這個擴建條件提供了一個平衡固溶矩陣與0.05-0.1米CuMgAl2沉淀和HB硬度為115。(三)在529 , 固溶24小時之后,水淬和在385 ,空氣中過度時效4小時產(chǎn)生大量沉淀物,降低強度和HB硬度為47.5。 在這組中,進行等徑角擠壓加強效果的評估。在所有情況下,按照如第3節(jié) 中所描述的D類工藝(旋轉(zhuǎn)90 ),模具溫度在150至200 范圍內(nèi)分別進行一,二,四及六次等徑角擠壓。同時對后等徑角擠壓的等時退火也進行了研究。4.1.2 。拉伸性能表1顯示了等徑角擠壓對硬度,屈服強度,抗拉強度和伸長率的影響。主要成果:單獨進行等徑角擠壓的晶粒細化(案例三)有效的增加強度比超峰時效約少25 。但是,硬度, 屈服強度和抗拉強度仍分別高于氧條件約2 ,4和2倍。 與傳統(tǒng)的T6條件相比,經(jīng)過超峰時效的等徑角擠壓樣本(案例二)造成只是稍微提高了拉伸性能。圖。實驗組1,屈服得到明顯改善。經(jīng)過第一遍工藝,相比T6條件屈服強度,抗拉強度和伸長率分別提高了40 , 25 和30 。經(jīng)過兩次工藝加工后,屈服強度和抗拉強度在類似的延性方面又分別增加了是50 和35 。經(jīng)過四道工藝,強度增加較工藝次數(shù)少的時候少,與T6狀態(tài)相比約減少了 10 ,。長期進行低于超峰時效溫度退火進一步提高強度和略有改善延性。在第一次工藝后實驗參數(shù)為退火溫度150 , 10 h,列于表1 。4.1.3 。微結(jié)構(gòu)和強化機制圖10顯示的是經(jīng)過第一和第四次工藝后的TEM顯微圖像,在第一次工藝后,結(jié)構(gòu)由復雜脫位配置(圖10b)和0.10.3微米二次晶粒組成(圖10a)。極精細得約1微米的G.P區(qū)(圖10b),或者呈一致的球形或著部分連貫,時刻存在于整個樣本中。經(jīng)過四年道工序后, 基體之間的界限變得模糊。平均晶粒尺寸為0.1微米如圖10C所示,其附近存在大量不溶性的沉淀物。位錯常常存在于邊界處,以少量位錯群的形式存在。同時可以看到尺寸較大的連貫的G.P區(qū)。對實驗組2,3而言,G.P區(qū)消失了,取而代之的是粗沉淀(實驗組2小于0.25微米和實驗組3超過5微米)。實驗組1的加固現(xiàn)象可以有以下兩方面解釋 20-24 :(一)通過增加位錯,晶粒或邊界的切應力來使其移動 ;(二)高密度的G.P區(qū)在熱等徑角擠壓的動態(tài)和在彼此等徑角擠壓過程預熱的靜態(tài)。這種占主導地位的機制是相互作用的高度密集的G.P區(qū)和位錯或細胞間的最佳組合。這種最佳機制強于僅用等徑角擠壓來細化晶粒(實驗組3),單獨使用常規(guī)工藝細化晶粒(T6)和等徑角擠壓后沉淀硬化(實驗組2)。對于低工藝次數(shù)而言這是最有效的方法。而高次數(shù)的工藝,重排和恢復的位錯,增大.P區(qū)和沉淀物受剪切力能有助于減少加強效果。4.1.4疲勞性能渦輪增壓器組件的關(guān)鍵要求是其疲勞性能,因為其持續(xù)工作在壓力、流量和速度都大的環(huán)境下,同時發(fā)動機的排量有嚴格的控制,還有就是要考慮到經(jīng)濟因素。在高周疲勞下,根據(jù)TMP的條件對鋁2618合金試樣進行了CAE處理。在控制軸向載荷、溫度在25到150之間、應力比R=0和R=-1、頻率59Hz以及正弦波形的條件下進行了測試。通過對鑄造354/C355的標準鋁合金渦輪增壓器和鍛壓2618T6鋁合金渦輪增壓器進行比較,據(jù)Sines當量應力44提出的論證的多軸高疲勞效應,做了進一步的分析。實驗結(jié)果表明對于兩個壓力比值,抗疲勞性能都有了明顯的提高。圖11給出了在R=0時的數(shù)據(jù)比較。在10到80周次時,疲勞壽命的增加主要取決于Sines壓力水平。原始數(shù)據(jù)顯示, 其最多可提高230倍。有趣的是,在如今應用最為廣泛的140-200MPa水平的Sines當量應力中,鋁2618合金的ECAE應用情況可類似的應用于鈦合金鑄造中。4.2ECAE應用于重鋁合金壓鑄的飛機起落架部件。4.2.1實驗起始原料是壓鑄合金組成為6.7 的鋅,3 的鎳 , 3 的錳,2.6 的鎂 , 0.7 的銅等元素的Al7xxx合金。該合金已應用于常規(guī)飛機的起落架部分,但是它的韌性和拉伸強度還不符合規(guī)范。鑄造后ECAE直接采用了在275時線路D的一、四、八及十六步進行操作。在ECAE之后,485固溶一小時,溫水中淬火,并且是在T7條件下進行這些操作。其顯微結(jié)構(gòu)用掃描電鏡(SEM)和光學顯微鏡進行觀察。而固溶物的尺寸則由掃描電鏡和破壞性液體粒子計數(shù)(LPC)來測定。用光滑試樣和缺口試樣來同時評價其YS、UTS、韌性及NYR。42.2實驗結(jié)果原始鑄態(tài)組織主要有兩種大型沉淀的類型,它們有5-60的稀缺圓形氧化物以及0.5-20的伴有鋅、錳和鎂的鎳富集階段。它們形成了一個統(tǒng)一的網(wǎng)絡結(jié)構(gòu)(如圖12a示)。同時存在著0.10.2的非常細的彌散物。Fig. 12. Optical microscopy of second phase precipitates in a spray-cast Al 7xxx modified alloy in the (a) as cast condition, (b) after one ECAE pass, and (c) aftereight ECAE passes.圖12b和c給出了由ECAE作為數(shù)字功能時,固溶物所起到的作用。表2顯示了相應固溶形態(tài)的其中之一,即四個和八個的過程。在第一個步驟之后會看到斷裂和拉伸的出現(xiàn)。在四和八過程之后,大于10和3m的固溶物中有個別的未檢出 ,但是相對比例最小的固溶物卻逐漸增多。也許,固溶強化機制是在斷裂和沿成功剪切面和在ECAE通過路線D激活的方向上,斷裂和連續(xù)均一不斷的完善了固溶強化機制。表3總結(jié)了對于鑄態(tài)組織條件下以及經(jīng)過在T7條件下ECAE的八和十六步驟后固溶強化機制的可測量性。切口屈服率相對于初始態(tài)提高了,這是因為在八和十六步驟后1.8和2.45的因素。這種效應伴隨著小但是總深長率卻不斷增加的情況出現(xiàn)。除原因尚不明確的16路徑硬度減少5%之外,其強度和硬度基本保持穩(wěn)定。ECAE應變的較高水平帶來的高積蓄能量是可能會導致固溶動力和沉淀速度的增加的。提高韌性時占主導地位的機制是晶粒細化以及特殊非可溶性第二相和氧化物的初始微裂變致使得均一化。這種效應可能會得到更強大的合金及高合金濃度??傮w而言,本研究及其他研究 25-30 表明ECAE在晶粒細化機制之外會產(chǎn)生獨特的性能。TEM的運用可以更好的了解這些現(xiàn)象。5結(jié) 論(1)ECAE平錯齒飾的按比例放大已在大量的鋁、銅以及鈦的合金中得到了應用。重量的處理明顯高與參考文獻中所寫到的。到目前為止,在采用基于過程理論了解的機理時,由簡單剪切而形成的晶粒細化機制被驗證是可操作并且是最為理想的。(2)ECAE的商業(yè)化已被應用,并且通過亞微晶和少量微晶這兩種不同尺寸類型的微晶開發(fā)了新型的鋁銅合金的濺射靶材。有人認為,在對提高諸如高純度,摻雜,低合金鋼或不耐熱合金鋼的力學性能時具有明顯優(yōu)勢,其原因是晶粒細化機制是其唯一強化機制。(3)隨著合金成分數(shù)量的增加,由于激烈變形和熱處理的相互作用,新機理和結(jié)構(gòu)的出現(xiàn)是有可能的。然后才能把各種強化機理加以合并,并且(或者)提高其疲勞或韌性這樣的具體的屬性。這樣有利機制除細化晶粒外,還有提純、沉淀階段的勻質(zhì)處理以及第二相變。謝詞作者祝C.C.Kouch 博士70歲生日快樂。我們感謝他的原因是他是材料科學和工程A的作者之一,同時感謝M.Payton 和B.Willett的協(xié)助,以及D.Mathur和B.Daniels的大力支持,還有S.Chadda的高度贊賞。參考文獻:1 C.C. Koch, Rev. Adv. Mater. Sci. 5 (2003) 9199.2 R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45 (2000)103.3 V.M. Segal, V.I. Reznikov, A.E. Drobyshevky, V.I. Kopylov, Russ. Metall.1 (1981) 971974.4 M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, ActaMater. 44 (1996) 46194629.5 M.V. Markushev, C.C. Bampton, M.Yu.Murashkin, D.A. Hardwick, Mater.Sci. Eng. A 234236 (1997) 927.6 Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Metall.Mater. Trans. A 29 (1998) 2245.7 O.V. Mishin, G. Gottstein, Phil. Mag. A 78 (1998) 373388.8 J.J. Beyerlein, R.A. Lebensohn, C.N. Tome, Mater. Sci. Eng. A 345 (2003)122138.9 S.D. Terhune, D.L. Swisher, K. Oh-Ishi, Z. Horita, T.G. Langdon, T.R.McNelley, Metall. Mater. Trans. A 33 (2002) 21732184.10 F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia, C. Harris, Phil.Trans. Roy. Soc. Lond., Ser. A 7 (1999) 16631680.11 V.M. Segal, Mater. Sci. Eng. A 197 (1995) 157164.12 S. Ferrasse, V.M. Segal, K.T. Hartwig, R.E. Goforth, Metall. Mater. Trans.A 28 (1997) 1047.13 S. Ferrasse, V.M. Segal, K.T. Hartwig, R.E. Goforth, J. Mater. Res. 12(1997) 1253.14 A.Y. Vinogradov, V.V. Stolyarov, S. Hashimoto, R.Z. Valiev, Mater. Sci.Eng. A 318 (2001) 163173.15 S.R. Agnew, J.R. Weertman, Mater. Sci. Eng. A 244 (1998) 45153.16 S.R. Agnew, A.Y. Vinogradov, S. Hashimoto, J.R. Weertman, J. Electron.Mater. 28 (1999) 10381044.17 H.W. Hoppel, R.Z. Valiev, Z. Metallkd. 93 (2002) 641648.18 V.M. Segal, V.I. Reznikov, V.I. Kopylov, D.A. Pavlik, V.F. Malyshev, ProcessyPlasticheskogo Structyroob Razovania Metallov, Sci. Eng. Minsk(1994) (in Russian).19 R.Y. Lapovok, Mater. Sci. Forum 503504 (2006) 3744.20 R.Y. Lapovok, C. Loader, F.H. Della Torre, S.L. Semiatin, Mater. Sci. Eng.A 425 (2006) 3646.21 A. Goloborodko, O. Sitdikov, R. Kaibyshev, H. Miura, T. Sakai, Mater. Sci.Eng. A 381 (2004) 121128.22 J.K. Kim, H.K. Kim, J.W. Park, W.J. Kim, Scripta Mater. 53 (2005)12071211.23 Y.H. Zhao, X.Z. Liao, Y.T. Zhu, R.Z. Valiev, Mater. J. Res. 20 (2005)288291.24 Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Acta Mater. 52 (2004)45894599.25 A. Ma, K. Suzuki, N. Saito, Y. Nishida, M. Takagi, I. Shigematsu, H. Iwata,Mater. Sci. Eng. A 399 (2005) 181189.26 A. Ma, K. Suzuki, Y. Nishida, N. Saito, I. Shigematsu, M. Takagi, H. Iwata,A. Watazu, T. Imura, Acta Mater. 53 (2005) 211220.27 Z.G. Zhang, Y. Watanabe, I. Kim, Mater. Sci. Technol. 21 (2005)708;C. Xu, M. Furukawa, Z. Horita, T.G. Langdon, Acta Mater. 53 (2005)749758.28 I. Sabirov, O. Kolednik, R.Z. Valiev, R. Pippan, Acta Mater. 53 (2005)49194930.29 Y. Huang, C. Xu, S. Lee, M. Furukawa, Z. Horita, T.G. Langdon, UltrafineGrained Materials II, The Minerals, Metals and Materials Society,Warrendale,PA, 2002, p. 173;Y.T. Zhu, T.G. Langdon, JOM (2004) 5658.30 V.M. Segal, Mater. Sci. Eng. A 386 (2004) 269276.31 T.C. Lowe, JOM (April) (2006) 2832.32 R.Z. Valiev, V.V. Stolyarov, H.J. Rack, T.C. Lowe, Adv. Mater. Process(2003) 33.33 R. Srinivasan, P. Chauduri, Mater. Sci. Forum 426432 (2003) 267272.34 P.K. Chaudhury, B. Cherukini, R. Srinivasan, Mater. Sci. Eng. A 410411(2005) 316318.35 R. Srinivasan, B. Cherukini, P.K. Chaudhury, Mat. Sci. Forum 503504(2006) 67272.36 S. Ferrasse, V.N. Segal, F. Alford, S. Strothers, J. Kardokus, S. Grabmeier,J. Evans, in: B.S. Altan (Ed.), Severe Plastic Deformation: Toward BulkProduction of Nanocrystalline Materials, Nova Science Publisher, NewYork, USA, 2006, pp. 585601.37 S. Ferrasse, F. Alford, S. Grabmeier, S. Strothers, J. Evans, B. Daniels, A.Duvel, R. Zedlitz, Semiconduct. Manuf. 4 (2003) 7692.38 V.M. Segal, US Patent 5,850,755 (1998).39 S. Ferrasse, V.M. Segal, S.R. Kalidindi, F. Alford, Mater. Sci. Eng. A 368(2004).40 M. Furukawa, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 332 (2002)97109.41 V.M. Segal, Mater. Sci. Eng. A 345 (2003) 3646.42 V.M. Segal, Mater. Sci. Eng. A 338 (2002) 331344.43 R. Srinivasan, Scripta Mater. 44 (2001) 91.44 A. Faterini, R.I. Stephens, H.O. Fuchs, Metal Fatigue in Engineering,Wiley,USA, 2001, p. 325.18
收藏