《第二節(jié) 函數(shù)的定義域與值域》由會員分享,可在線閱讀,更多相關(guān)《第二節(jié) 函數(shù)的定義域與值域(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第2章 第二節(jié) 函數(shù)的定義域與值域一、選擇題(65分30分)1(2009江西高考)函數(shù)y的定義域為()A(4,1)B(4,1)C(1,1) D(1,1解析:由1x1.答案:C2(2011銀川模擬)若函數(shù)yf(x)的定義域是0,2,則函數(shù)g(x)的定義域是()A0,1 B0,1)C0,1)(1,4 D(0,1)解析:要使g(x)有意義,則,解得0x1,故定義域為0,1)答案:B3函數(shù)ylog2xlogx(2x)的值域為()A(,1 B3,)C1,3 D(,13,)解析:ylog2xlogx21,log2xlogx22或log2xlogx22,從而y3或y1.答案:D4(2011臨沂質(zhì)檢)若函數(shù)f
2、(x)的值域為,3,則函數(shù)F(x)f(x)的值域是()A,3 B2,C, D3,解析:令f(x)t,t,3,問題轉(zhuǎn)化為求函數(shù)yt在,3的值域又y1,當(dāng)t,1,y0,yt為減函數(shù),在1,3,y0,yt在1,3上為增函數(shù),故t1時ymin2,t3時y為最大yt,t,3的值域為2,答案:B5(2011南通模擬)若函數(shù)yf(x)的值域是1,3,則函數(shù)F(x)12f(x3)的值域是()A5,1 B2,0C6,2 D1,3解析:1f(x)3,1f(x3)3,62f(x3)2,5F(x)1.答案:A6若函數(shù)y的定義域為R,則實數(shù)m的取值范圍是()A(0,) B(,0)(0,)C(,0,) D0,)解析:依題
3、意,函數(shù)的定義域為R,即mx24mx30恒成立當(dāng)m0時,得30,故m0適合,可排除A、B.當(dāng)m0時,16m212m0,得0m,綜上可知0m,排除C.答案:D二、填空題(35分15分)7若函數(shù)f(x)的定義域是0,1,則f(xa)f(xa)(0a)的定義域是_解析:f(x)的定義域為0,1,要使f(xa)f(xa)有意義,須且0a,a1a,ax1a.答案:a,1a8(2011黃岡模擬)定義:區(qū)間x1,x2(x11,02,111,所求值域為(1,1)11(12分)(2010福建四地方校聯(lián)考)設(shè)集合A0,),B,1,函數(shù)f(x)若x0A,且ff(x0)A,求x0的取值范圍解析:0x0,f(x0)x0
4、,1)B,ff(x0)2(1f(x0)21(x0)2(x0)ff(x0)A,02(x0).x0,又0x0,故x0.12(13分)設(shè)函數(shù)f(x)g(x)f(x)ax,x1,3,其中aR,記函數(shù)g(x)的最大值與最小值的差為h(a)(1)求函數(shù)h(a)的解析式;(2)畫出函數(shù)yh(a)的圖象并指出h(a)的最小值解析:(1)g(x)當(dāng)a1時,函數(shù)g(x)是區(qū)間1,3上的減函數(shù),此時,g(x)ming(3)23a,g(x)maxg(1)1a,所以h(a)2a1;當(dāng)0a1時,若x1,2,則g(x)1ax,有g(shù)(2)g(x)g(1);若x(2,3,則g(x)(1a)x1,有g(shù)(2)g(x)g(3);因此,g(x)ming(2)12a,而g(3)g(1)(23a)(1a)12a,故當(dāng)0a時,g(x)maxg(3)23a,有h(a)1a;當(dāng)a1時,g(x)maxg(1)1a,有h(a)a,綜上所述:h(a)(2)畫出yh(a)的圖象,如圖所示數(shù)形結(jié)合,可得h(a)minh().