2019-2020學年八年級數(shù)學上冊 第十四章 整式的乘法與因式分解 14.1 整式的乘法 14.1.4 整式的乘法(3)課件 新人教版.ppt

上傳人:tian****1990 文檔編號:14664701 上傳時間:2020-07-27 格式:PPT 頁數(shù):23 大?。?04KB
收藏 版權申訴 舉報 下載
2019-2020學年八年級數(shù)學上冊 第十四章 整式的乘法與因式分解 14.1 整式的乘法 14.1.4 整式的乘法(3)課件 新人教版.ppt_第1頁
第1頁 / 共23頁
2019-2020學年八年級數(shù)學上冊 第十四章 整式的乘法與因式分解 14.1 整式的乘法 14.1.4 整式的乘法(3)課件 新人教版.ppt_第2頁
第2頁 / 共23頁
2019-2020學年八年級數(shù)學上冊 第十四章 整式的乘法與因式分解 14.1 整式的乘法 14.1.4 整式的乘法(3)課件 新人教版.ppt_第3頁
第3頁 / 共23頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2019-2020學年八年級數(shù)學上冊 第十四章 整式的乘法與因式分解 14.1 整式的乘法 14.1.4 整式的乘法(3)課件 新人教版.ppt》由會員分享,可在線閱讀,更多相關《2019-2020學年八年級數(shù)學上冊 第十四章 整式的乘法與因式分解 14.1 整式的乘法 14.1.4 整式的乘法(3)課件 新人教版.ppt(23頁珍藏版)》請在裝配圖網上搜索。

1、八年級 數(shù)學 上冊,人教版,,14.1.4 整式的乘法 (第3課時),,,,掌握多項式乘以多項式的運算法則,能靈活運用多項式乘以多項式的運算法則進行運算,m2 m3=m6 ( ) (a5)2=a7( ) (ab2)3=ab6( ) m5+m5=m10( ) (-x)3(-x)2=-x5 ( ),,m5,,a10,,a3b6,,2m5,,,復習導入,,1、同底數(shù)冪的乘法:,2、冪的乘方:,3、積的乘方:,aman=am+n,(am)n=amn,(ab)n=anbn,冪的三個運算性質,注意:m,n為正整數(shù),底數(shù)a可以是數(shù)、字母或式子。,知識回顧,,為了把校園建設成為花園式的學校,經研究決定

2、將原有的長為a米,寬為b米的足球場向宿舍樓方向加長m米,向廁所方向加寬n米,擴建成為美化校園綠草地。你是學校的小主人,你能幫助學校計算出擴展后綠地的面積嗎?,a,探索新知,,,長為 a+b 寬為 m+n S = (a+ b) (m +n),,,,探索新知,,,am,an,bn,bm,S = am+ bm+ an+ bn,,,am,探索新知,,,,a (m+n),b (m+n),m (a+b),n (a+b),S= a (m+n)+ b(m+n),S=m (a+b)+ n (a+b),方案一:S=a b + a n + b m + m n,方案二:S= b ( a + m ) + n ( a +

3、 m ),方案三: S= a ( b + n ) + m ( b + n ),方案四: S=( a + m ) ( b + n ),探索新知,,( a + m )( b + n ) = a ( b + n ) + m ( b + n ) =a b + a n + b m +b n,或( a + m )( b + n ) = b ( a + m ) + n ( a+m) = a b + b m + a n + m n,四種方案算出的面積相等,探索新知,,觀察上述式子,你能的得到(x3)(x6) 的結果嗎?,( x 3 )( y 6 ) = x ( y 6 ) 3

4、( y 6 ) = x y 6x 3y + 18,探索新知,,多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加.,探索新知,,(1) (2x+1)(x+3) (2) (m+2n)(m+3n) (3) ( a 1)2 (4) (a+3b)(a 3b ) (5) (x+2)(x+3) (6) (x4)(x+1) (7) (y+4)(y2) (8) (y5)(y3),,答案: (1) 2x2+7x+3; (2) m2+5mn+6n2; (3) a22a+1; (4) a29b2 (5) x2+5x+6; (6) x

5、23x4; (7) y2+2y8; (8) y28y+15.,課堂練習,,() (2a+b)2;,() (x1)(x2+x+1) ;,猜想:,(x+1)(x2x+1) =?,例2:求值:(x-8)(x-5)-(2x-1)(x+2) 其中x=-1,課堂思考,,解:(1) 原式=(x+y)(x+y) =x2+ xy+ xy+ y2 =x2+ 2xy+ y2 (2)原式=x3y+ xy2+x2y2+y3 ( 3 ) 原式=(2x2-xy+2xy-y2)(3x+2y ) = (2x2+xy-y2)(3x+2y) = 6x3+4x2y+3x2y+2

6、xy2-3xy2-2y2 =6x3 + 7x2y-xy2-2y2,(3) (x+y)(2xy)(3x+2y).,(1) (x+y)2 (2) (x+y)(x2y+y2),探索新知,,如果a2a=1,那么求(a5)(a6)的值,若(xm)(x2)的積中不含關于x的一次項,求m的值,探索新知,,(x+2)(x+3) = x2 + 5x+6; (x-4)(x+1) = x2 3x4 (y+4)(y-2) = y2 + 2y8 (y-5)(y-3). = y28y+15,觀察上述式子,你可以 得出一個什么規(guī)律嗎?,(x+p)(x+q) = x2 + (p+q) x + p q,探索新知,

7、,確定下列各式中m的值: (1) (x+4)(x+9) = x2 + m x + 36 (2) (x-2)(x-18) = x + m x + 36 (3) (x+3)(x+p) = x + m x + 36 (4) (x-6) (x-p) = x + m x + 36,(1) m =13,(2) m = - 20,(3) p =12, m= 15,(4) p= -6, m= -12,綜合練習,,1、多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加.,課堂總結,,課堂總結,2、多項式與多項式相乘時,多項式的每一項都應該帶上它前面的正負號。多項式是單項式的和,每一項都包括前面的符號,在計算時一定要注意確定各項的符號。,4、在數(shù)學知識的學習中,“轉化”思想是的重要思想方法。在今天的學習中,第一步是“轉化”為多項式與單項式相乘,第二步是“轉化”為單項式乘法。即將新的知識、方法化為已知的數(shù)學知識、方法。從而使學習能夠進行。,3、(x+p)(x+q) = x2 + (p+q) x + p q,課堂總結,,解方程與不等式: (1) (x3)(x2)+18 = (x+9)(x+1) (2) (3x+4)(3x4) 9(x2)(x+3),課后思考,,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!