2018-2019學(xué)年高中數(shù)學(xué) 第一章 解三角形 1.1 正弦定理和余弦定理 第2課時 余弦定理課件 新人教A版必修5.ppt

上傳人:jun****875 文檔編號:14525507 上傳時間:2020-07-22 格式:PPT 頁數(shù):33 大?。?.39MB
收藏 版權(quán)申訴 舉報 下載
2018-2019學(xué)年高中數(shù)學(xué) 第一章 解三角形 1.1 正弦定理和余弦定理 第2課時 余弦定理課件 新人教A版必修5.ppt_第1頁
第1頁 / 共33頁
2018-2019學(xué)年高中數(shù)學(xué) 第一章 解三角形 1.1 正弦定理和余弦定理 第2課時 余弦定理課件 新人教A版必修5.ppt_第2頁
第2頁 / 共33頁
2018-2019學(xué)年高中數(shù)學(xué) 第一章 解三角形 1.1 正弦定理和余弦定理 第2課時 余弦定理課件 新人教A版必修5.ppt_第3頁
第3頁 / 共33頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018-2019學(xué)年高中數(shù)學(xué) 第一章 解三角形 1.1 正弦定理和余弦定理 第2課時 余弦定理課件 新人教A版必修5.ppt》由會員分享,可在線閱讀,更多相關(guān)《2018-2019學(xué)年高中數(shù)學(xué) 第一章 解三角形 1.1 正弦定理和余弦定理 第2課時 余弦定理課件 新人教A版必修5.ppt(33頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第 一 章,解三角形,1.1正弦定理和余弦定理,第2課時余弦定理,自主預(yù)習(xí)學(xué)案,中國海監(jiān)船肩負著我國海域的維權(quán)、執(zhí)法使命某時某中國海監(jiān)船位于中國南海的A處,與我國海島B相距s n mile.據(jù)觀測得知有一外國探油船位于我國海域C處進行非法資源勘探,這艘中國海監(jiān)船奉命以v n mile/小時的速度前去驅(qū)逐假如能測得BAC,BCm n mile,你能根據(jù)上述數(shù)據(jù)計算出它趕到C處的時間嗎?,,減去,兩,a2b22abcosC,2.利用余弦定理及其推論解三角形的類型 (1)已知三角形的__________求三個角; (2)已知三角形的________________求第三邊及兩角 3余弦定理和勾股定理

2、的關(guān)系 在ABC中,由余弦定理得c2a2b22abcosC,若角C90,則cosC0,于是c2a2b2,這說明勾股定理是余弦定理的特例,余弦定理是勾股定理的推廣 設(shè)c是ABC中最大的邊(或C是ABC中最大的角),則 a2b2c2ABC是________三角形,且角C為________.,三條邊,兩邊及其夾角,鈍角,鈍角,直角,直角,銳角,銳角,C,A,3在ABC中,已知a5,b7,c8,則AC() A90B120 C135D150,B,4(20182019學(xué)年度甘肅天水一中高二月考)在ABC中,已知sinAsinBsinC578,則B的大小為______,互動探究學(xué)案,命題方向1已知兩邊及一角

3、解三角形,例題 1,分析已知兩邊及其中一邊的對角,先由余弦定理列方程求c,然后求A、C,規(guī)律總結(jié)已知兩邊及一角解三角形的方法: (1)當(dāng)已知兩邊及它們的夾角時,用余弦定理求解出第三邊,再用正弦定理和三角形內(nèi)角和定理求解另外兩角,只有一解; (2)當(dāng)已知兩邊及其一邊的對角時,可用余弦定理建立一元二次方程,解方程求出第三邊;也可用正弦定理求解,但都要注意解的情況的討論利用余弦定理求解相對簡便,D,(2)已知ABC中,a1,b1,C120,則邊c______,命題方向2已知三邊解三角形,例題 2,規(guī)律總結(jié)已知三邊解三角形的方法 (1)先利用余弦定理求出一個角的余弦,從而求出第一個角;再利用余弦定理或

4、由求得的第一個角,利用正弦定理求出第二個角;最后利用三角形的內(nèi)角和定理求出第三個角 (2)利用余弦定理求三角的余弦,進而求得三個角,120,命題方向3判斷三角形的形狀,在ABC中,若b2sin2Cc2sin2B2bccosBcosC,試判斷ABC的形狀 分析思路一,利用正弦定理將已知等式化為角的關(guān)系;思路二,利用余弦定理將已知等式化為邊的關(guān)系,例題 3,規(guī)律總結(jié)已知三角形的邊或角的關(guān)系式解三角形或判斷三角形的形狀,可先觀察條件式的特點,再依據(jù)此特點選取變形方法,當(dāng)?shù)仁絻啥烁黜椂己羞厱r常用正弦定理變形,當(dāng)?shù)仁絻蛇吅薪堑恼业耐蝺鐣r,常用正弦定理變形,當(dāng)含有邊的積式及邊的平方和與差的形式時,??紤]用余弦定理變形,可以化邊為角,通過三角變換求解,也可以化角為邊,通過因式分解、配方等方法得出邊的關(guān)系等等,在鈍角三角形ABC中,a1,b2,ct,且C是最大角,求t的取值范圍,例題 4,忽略三角形的條件致錯,辨析錯解中忽略了三角形中,兩邊之和大于第三邊而導(dǎo)致錯誤,例題 5,正弦、余弦定理的綜合應(yīng)用,分析(1)已知等式2cosC(acosBbcosA)C中有角有邊,且等式兩邊邊長的次數(shù)相同,結(jié)合括號內(nèi)式子的特點聯(lián)想到兩角和的正弦公式,故化邊為角,結(jié)合內(nèi)角和定理及誘導(dǎo)公式求解; (2)已知邊c,角C和三角形面積,利用面積公式可求得a、b關(guān)系,只要求出ab即可,C,A,1,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!