《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 第二講 數(shù)列求和及數(shù)列的綜合應(yīng)用素能提升練 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 第二講 數(shù)列求和及數(shù)列的綜合應(yīng)用素能提升練 理(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列 第二講 數(shù)列求和及數(shù)列的綜合應(yīng)用素能提升練 理1.若數(shù)列an是公差為2的等差數(shù)列,則數(shù)列是()A.公比為4的等比數(shù)列B.公比為2的等比數(shù)列C.公比為的等比數(shù)列D.公比為的等比數(shù)列解析:an=a1+2(n-1),=22=4.是等比數(shù)列,公比為4.答案:A2.已知在數(shù)列an中,a1=-60,an+1=an+3,則|a1|+|a2|+|a3|+|a30|等于()A.445B.765C.1080D.3105解析:an+1=an+3,an+1-an=3.an是以-60為首項(xiàng),3為公差的等差數(shù)列.an=a1+3(n-1)=3n-63.令an0,得n21.前20項(xiàng)都
2、為負(fù)值.|a1|+|a2|+|a3|+|a30|=-(a1+a2+a20)+a21+a30=-2S20+S30.Sn=n=n,|a1|+|a2|+|a3|+|a30|=765.答案:B3.設(shè)數(shù)列an的前n項(xiàng)和Sn=2n-1,則的值為()A.B.C.D.解析:Sn=2n-1,.答案:A4.設(shè)某商品一次性付款的金額為a元,以分期付款的形式等額地分成n次付清,若每期利率r保持不變,按復(fù)利計(jì)算,則每期期末所付款是()A.(1+r)n元B.元C.(1+r)n-1元D.元解析:設(shè)每期期末所付款是x元,則各次付款的本利和為x(1+r)n-1+x(1+r)n-2+x(1+r)n-3+x(1+r)+x=a(1+
3、r)n,即x=a(1+r)n,故x=.答案:B5.(xx黑龍江大慶第二次質(zhì)檢,10)已知數(shù)列an滿足an+1=an-an-1(n2),a1=1,a2=3,記Sn=a1+a2+an,則下列結(jié)論正確的是()A.axx=-1,Sxx=2B.axx=-3,Sxx=5C.axx=-3,Sxx=2D.axx=-1,Sxx=5解析:由已知數(shù)列an滿足an+1=an-an-1(n2),知an+2=an+1-an,an+2=-an-1(n2),an+3=-an,an+6=an,又a1=1,a2=3,a3=2,a4=-1,a5=-3,a6=-2,所以當(dāng)kN時(shí),ak+1+ak+2+ak+3+ak+4+ak+5+ak
4、+6=a1+a2+a3+a4+a5+a6=0,axx=a4=-1,Sxx=a1+a2+a3+a4=1+3+2+(-1)=5.答案:D6.數(shù)列an的通項(xiàng)公式an=ncos,其前n項(xiàng)和為Sn,則Sxx等于()A.1006B.xxC.503D.0解析:函數(shù)y=cos的周期T=4,可分四組求和:a1+a5+axx=0,a2+a6+axx=-2-6-xx=-5031006,a3+a7+axx=0,a4+a8+axx=4+8+xx=5031008.故Sxx=0-5031006+0+5031008=503(-1006+1008)=1006.答案:A7.(xx河南鄭州第二次質(zhì)檢,12)已知正項(xiàng)數(shù)列an的前n項(xiàng)
5、和為Sn,若2Sn=an+(nN*),則Sxx=()A.xx+B.xx-C.xxD.解析:由題意可知,當(dāng)n2時(shí),an=Sn-Sn-1,則2Sn=an+=Sn-Sn-1+,整理,得=1.=1,即數(shù)列是公差為1的等差數(shù)列,又由2S1=2a1=a1+,解得a1=1(an0),即S1=1,=1,因此=n.故Sxx=.答案:D8.(xx河北唐山高三統(tǒng)考,16)若數(shù)列an的前n項(xiàng)和為Sn,且a1=3,an=2Sn-1+3n(n2),則該數(shù)列的通項(xiàng)公式為an=.解析:an=2Sn-1+3n,an-1=2Sn-2+3n-1(n3),相減得an-an-1=2an-1+23n-1,即an=3an-1+23n-1.
6、(n3).又a2=2S1+32=2a1+32=15,即,數(shù)列是以1為首項(xiàng),為公差的等差數(shù)列,=1+(n-1).an=(2n+1)3n-1.答案:(2n+1)3n-19.(xx貴州六校第一次聯(lián)考,16)已知f(x)=,各項(xiàng)均為正數(shù)的數(shù)列an滿足a1=1,an+2=f(an),若a12=a14,則a13+axx=.解析:由f(x)=,a1=1,an+2=f(an)可得a3=,a5=,同理可推得a7=,a9=,a11=,a13=,由a12=a14,得,a10=a12,依次推出a2=a4=a6=axx,由a4=f(a2),得a2=+a2-1=0,a2=.故a13+axx=.答案:10.(xx浙江高考,
7、理18)在公差為d的等差數(shù)列an中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.(1)求d,an;(2)若d0,求|a1|+|a2|+|a3|+|an|.解:(1)由題意得5a3a1=(2a2+2)2,即d2-3d-4=0,故d=-1或d=4.當(dāng)d=-1時(shí),an=-n+11.當(dāng)d=4時(shí),an=4n+6.所以d=-1,an=-n+11,nN*或d=4,an=4n+6,nN*.(2)設(shè)數(shù)列an的前n項(xiàng)和為Sn.因?yàn)閐0,所以an=2n.(2)bn=nan=n2n,Sn=121+222+323+(n-1)2n-1+n2n,2Sn=122+223+324+(n-1)2n+n2n+1,由-,得
8、-Sn=121+22+23+2n-n2n+1,即-Sn=-n2n+1,整理可得Sn=(n-1)2n+1+2.12.已知向量p=(an,2n),向量q=(2n+1,-an+1),nN*,向量p與q垂直,且a1=1.(1)求數(shù)列an的通項(xiàng)公式;(2)若數(shù)列bn滿足bn=log2an+1,求數(shù)列anbn的前n項(xiàng)和Sn.解:(1)向量p與q垂直,2n+1an-2nan+1=0,即2nan+1=2n+1an.=2.an是以1為首項(xiàng),2為公比的等比數(shù)列.an=2n-1.(2)bn=log2an+1,bn=n.anbn=n2n-1.Sn=1+22+322+423+n2n-1.2Sn=12+222+323+424+n2n.-,得-Sn=1+2+22+23+24+2n-1-n2n=-n2n=(1-n)2n-1.Sn=1+(n-1)2n.13.設(shè)正項(xiàng)數(shù)列an的前n項(xiàng)和是Sn,若an和都是等差數(shù)列,且公差相等.(1)求an的通項(xiàng)公式;(2)若a1,a2,a5恰為等比數(shù)列bn的前三項(xiàng),記數(shù)列cn=,數(shù)列cn的前n項(xiàng)和為T(mén)n.求證:對(duì)任意nN*,都有Tn2.(1)解:設(shè)an的公差為d,則n,且a1-=0.d=,d=,a1=,an=.(2)證明:b1=a1=,b2=a2=,b3=a5=,bn=3n-=.當(dāng)n2時(shí),=,當(dāng)n2時(shí),Tn=+=2-2,且T1=2.故對(duì)任意nN*,都有Tn2.