EEG信號(hào)MATLAB分析平臺(tái)設(shè)計(jì)-模式識(shí)別部分【含畢業(yè)論文、開題報(bào)告、文獻(xiàn)綜述】
EEG信號(hào)MATLAB分析平臺(tái)設(shè)計(jì)-模式識(shí)別部分【含畢業(yè)論文、開題報(bào)告、文獻(xiàn)綜述】,eeg,信號(hào),matlab,分析,平臺(tái),設(shè)計(jì),模式識(shí)別,部分,部份,畢業(yè)論文,開題,報(bào)告,講演,呈文,文獻(xiàn),綜述
本科生畢業(yè)設(shè)計(jì)(論文)文 獻(xiàn) 綜 述姓 名學(xué) 號(hào)學(xué) 院專 業(yè)年 級(jí)一、課題國內(nèi)外現(xiàn)狀人的大腦是由數(shù)以萬計(jì)的針尖大小的神經(jīng)交錯(cuò)構(gòu)成的。神經(jīng)相互作用時(shí),腦電波模式就表現(xiàn)為思維狀態(tài)。每次神經(jīng)活動(dòng)時(shí)都會(huì)產(chǎn)生輕微的放電,許多神經(jīng)共同放電產(chǎn)生的集體電波可以通過測量得到。從頭皮記錄到的 EEG 信號(hào)時(shí)域的幅值在 0.1~200uV, 頻率主要分布在 0.5~ 50 Hz 之間。相關(guān)研究已表明,人體在做不同動(dòng)作或者想像任務(wù)時(shí)大腦皮層不同區(qū)域的刺激大小不同,相應(yīng)會(huì)產(chǎn)生不同的 EEG 信號(hào) [1]。1929 年德國神經(jīng)精神病學(xué)家 Hans Berger 首先報(bào)告了在人類完整的頭皮上安放電極,描記人類大腦的電活動(dòng)。此后他的研究成果不斷得到電生理及神經(jīng)生理學(xué)家的證實(shí),使 EEG 學(xué)在全世界范圍得以發(fā)展,并開始為臨床和科學(xué)服務(wù)。診斷異常腦電圖,主要不是根據(jù)它缺少正常腦電圖的成分或類型,而應(yīng)根據(jù)它是否含有不正常腦電活動(dòng)或類型。自 1932 年 Dietch 首先用傅立葉變換進(jìn)行了 EEG 分析之后, 在腦電分析中相繼引入了頻域分析、時(shí)域分析等腦電圖分析的經(jīng)典方法。近年來, 在腦電圖分析中應(yīng)用了小波分析、匹配跟蹤方法、神經(jīng)網(wǎng)絡(luò)分析、混沌分析等方法以及各種分析方法的有機(jī)結(jié)合, 有力地推動(dòng)了腦電信號(hào)分析方法的發(fā)展 [2]。(1)AR 參數(shù)模型譜估計(jì)。在現(xiàn)代譜估計(jì)方法中,參數(shù)模型法是應(yīng)用最廣泛的一種方法,近年來在EEG 信號(hào)處理中應(yīng)用較為普遍。將 AR 模型應(yīng)用到 EEG 分析中的基本思想是假設(shè)可以用 AR 過程近似真實(shí) EEG 信號(hào),基于這一假設(shè),根據(jù)實(shí)際 EEG 信號(hào),選取合適的階次、參數(shù)使得 AR 模型所對(duì)應(yīng)的 AR 過程盡可能逼近 EEG 信號(hào)。采用 AR 參數(shù)模型進(jìn)行特征提取,是考慮到 EEG 信號(hào)是典型的非平穩(wěn)隨機(jī)信號(hào)[12]。利用 AR 模型對(duì) EEG 信號(hào)進(jìn)行壓縮。在一般的 EEG 實(shí)驗(yàn)室中,50~60 分鐘長的 EEG 信號(hào)是常見的事,因此,大容量的腦電信號(hào)的存儲(chǔ)是腦電數(shù)據(jù)庫必然面臨的問題。因此,EEG 信號(hào)的數(shù)據(jù)壓縮具有重大的現(xiàn)實(shí)意義。實(shí)測得到的 EEG 數(shù)據(jù)長約 160 s, 采樣率為 256Hz ,4 通道。測得的 EEG 信號(hào)利用AR 模型分段擬合,每段采樣點(diǎn)數(shù)為 1024 點(diǎn),AR 的階數(shù) P =15,采用 Levison-Durbin 遞推算法,從而把 1024 點(diǎn)數(shù)據(jù)壓縮為 16 個(gè)系數(shù)與預(yù)測誤差。(2)雙譜分析。功率譜分析可以有效地反映信號(hào)的二階信息,卻丟失了包括相位信息在內(nèi)的高階信息,而這些信息對(duì) EEG 信號(hào)分析有時(shí)顯得很有意義。雙譜分析要求信號(hào)至少三階平穩(wěn),因此對(duì)短數(shù)據(jù) EEG 信號(hào)才有意義。(3)時(shí)頻分析腦電信號(hào)是一種時(shí)變的、非平穩(wěn)信號(hào),不同時(shí)刻有不同的頻率成分,而單純的時(shí)、頻分析方法通過傅氏變換聯(lián)系起來,它們的截然分開是以信號(hào)的頻率時(shí)不變特性或統(tǒng)計(jì)特性平穩(wěn)為前提的。但由于時(shí)域和頻域分辨率的“不確定性原理” ,不可能在時(shí)域和頻域同時(shí)獲得較高的分辨率。而且在 EEG 中有許多病變都是以瞬態(tài)形式表現(xiàn)的,只有把時(shí)間和頻率結(jié)合起來進(jìn)行處理才能取得更好的結(jié)果。可以說信號(hào)的時(shí)-頻表示法為腦電信號(hào)處理提供了非常好的前景。目前應(yīng)用的較為廣泛的方法有維格納- 費(fèi)利分布(Wigner -VilleDistribution,WD)和小波變換,匹配跟蹤方法目前也已用于睡眠紡錘波的分析 [2]。(4)諧波小波包變換腦電波是典型的非平穩(wěn)信號(hào),不同時(shí)刻有不同的頻率成分,把時(shí)間和頻率結(jié)合起來分析才能得到更好的結(jié)果。小波變換具有很好的時(shí)頻分析功能,因此近年來應(yīng)用小波變換分析腦電波倍受關(guān)注。例如應(yīng)用小波變換的多尺度分析來分析 EEG 中的異常波,如棘波、棘慢復(fù)合波等。在腦電圖檢測中,許多病變是以瞬態(tài)異常波形表現(xiàn)的,因此小波變換的局部瞬變捕捉性質(zhì)和線性相位特性尤為重要。常見的二進(jìn)小波變換的主要缺點(diǎn)是隨著分解層數(shù)的增加,逐漸向低頻聚焦,對(duì)信號(hào)的高頻段的刻劃比較粗糙。小波包變換是二進(jìn)小波變換的改進(jìn),對(duì)信號(hào)的高頻段也進(jìn)行分解,但是仍不能在同一分解層得到感興趣的頻段。另外,二進(jìn)小波變換和二進(jìn)小波包變換均采用二抽一采樣,隨著尺度的增加,采樣頻率減半,數(shù)據(jù)點(diǎn)減半,當(dāng)數(shù)據(jù)點(diǎn)數(shù)比較少時(shí),信號(hào)的細(xì)節(jié)會(huì)丟失。英國劍橋大學(xué) Newland 教授提出的諧波小波包變換對(duì)信號(hào)中的奇異成分非常敏感,具有線性相位特性并且可以用快速傅立葉算法實(shí)現(xiàn),具有重要的工程應(yīng)用意義。諧波小波變換可以通過 FFT 和 IFFT 運(yùn)算實(shí)現(xiàn),這是諧波小波變換顯著的優(yōu)點(diǎn)。參數(shù)決定了諧波小波變換的尺度,通過不斷變化參數(shù)的值,調(diào)節(jié)帶寬大小和中心頻率,以匹配不同頻帶的信號(hào),就實(shí)現(xiàn)了諧波小波包變換 [6]。(5)希爾伯特一黃變換時(shí)頻分析方法在腦電分析中有其優(yōu)勢,但主要的時(shí)頻分析方法各有優(yōu)缺點(diǎn):短時(shí)傅立葉變換簡單易實(shí)現(xiàn),其主要缺陷在于所謂“窗效應(yīng)” ,使用固定的窗函數(shù),其頻率分辨率受窗寬約束;小波變換采用可變窗口對(duì)信號(hào)進(jìn)行分析,較好地解決了時(shí)間和頻率分辨率的矛盾,是目前最好的時(shí)頻分析方法之一。但小波方法也有其缺點(diǎn):一旦選擇了小波母函數(shù),則必須用它來分析全部信號(hào),因此,小波不具有自適應(yīng)性。此外.有時(shí)小波變換的解釋也不直觀。黃鄂博士等提出的希爾伯特一黃變換(Hilbert--Huang Transform HHT)是一種新的非平穩(wěn)信號(hào)時(shí)頻分析方法,通過 EMD(empirical mode decompositionEMD)方法得到一系列內(nèi)蘊(yùn)模態(tài)函數(shù)(intrinsicmodefunctionIMF)。IMF 的特點(diǎn)使得通過希爾伯特變換得到的瞬時(shí)頻率不僅有數(shù)學(xué)上的意義,也有了物理上的意義。另外,EMD 分解的基函數(shù)直接來自信號(hào)本身,信號(hào)分解具有局域性和自適應(yīng)性,特別適合于分析非平穩(wěn)信號(hào)。對(duì) IM'F 進(jìn)行希爾伯特交換可以構(gòu)建信號(hào)的時(shí)間一頻率一振幅(能量) 分布,即希爾伯特(能量) 譜。希爾伯特譜無論在頻域還是時(shí)域上都有良好的分辨率,并且三維的分布能夠反映出信號(hào)的內(nèi)在本質(zhì)特性 [7]。人們希望通過自發(fā)腦電,解釋人的心理活動(dòng),用大腦中電壓變化測量心理活動(dòng),需要?jiǎng)×业?、非常的心理活?dòng)才能在自發(fā)腦電上觀測到一點(diǎn)點(diǎn)變化。但用自發(fā)腦電活動(dòng)來衡量人的心理活動(dòng)內(nèi)容,由于腦電太弱,此時(shí)就需要把這種內(nèi)容重復(fù)呈現(xiàn) 30-50 次,把每次測量到的電位疊加起來,才能進(jìn)行觀察,這就是所說的誘發(fā)電位技術(shù),通常叫做事件相關(guān)電位,簡稱 ERP。ERP 學(xué)在認(rèn)知神經(jīng)科學(xué)中具有重要作用。這是因?yàn)樵谘芯烤吒鼜V泛重要性的問題之前,你首先需要相當(dāng)程度地了解那些特異性 ERP 成分 [10]。一般情況下,進(jìn)行 ERP 研究時(shí),為得到可靠的 ERP 波形,對(duì)原始腦電數(shù)據(jù)的離線分析過程主要包括以下基本步驟 [3]:(1)合并行為數(shù)據(jù);(2)腦電預(yù)覽;(3)偽跡剔除或矯正,包括眼電(EOG) 、心電(EKG ) 、肌電(EMG)等;(4)數(shù)字濾波(根據(jù)具體情況和經(jīng)驗(yàn)進(jìn)行參數(shù)選擇) ;(5)腦電分段;(6)基線校正;(7)去除偽跡;(8)疊加平均;(9)數(shù)字濾波(根據(jù)需要選擇)和平滑化處理;(10)總平均;(11)波形識(shí)別、測量、統(tǒng)計(jì)分析、作圖。針對(duì) EEG 信號(hào)的模式識(shí)別國外學(xué)者已進(jìn)行了大量的實(shí)驗(yàn)與研究。對(duì)于BCI 技術(shù)來說,要使腦機(jī)接口技術(shù)有更大實(shí)用意義,必然要實(shí)現(xiàn)多類 EEG 信號(hào)模式識(shí)別,所以提高多類分類的精度是很有必要的。但由于實(shí)驗(yàn)方法各有差異,且各種多分類方法本身均存在不同程度的缺陷,并沒有一個(gè)公認(rèn)的效果很好的多分類方法。而支持向量機(jī)與其它傳統(tǒng)的模式識(shí)別方法相比,以其結(jié)構(gòu)風(fēng)險(xiǎn)最小化原則而非經(jīng)驗(yàn)風(fēng)險(xiǎn)最小化原則,在 EEG 的模式識(shí)別問題中也已展現(xiàn)出較強(qiáng)的分類能力和泛化能力 [4]。支持向量機(jī) SVM 是在統(tǒng)計(jì)學(xué)習(xí)理論基礎(chǔ)上發(fā)展起來的一種新的機(jī)器學(xué)習(xí)方法,是結(jié)構(gòu)風(fēng)險(xiǎn)最小化原理的實(shí)現(xiàn)。算法實(shí)現(xiàn)需具有深厚的數(shù)學(xué)功底和計(jì)算機(jī)編程技術(shù),對(duì)非計(jì)算機(jī)專業(yè)的廣大研究人員來說,一種簡單高效的實(shí)現(xiàn)環(huán)境和方法是迫切的需要。支持向量機(jī)算法在 MATLAB 環(huán)境下易于實(shí)現(xiàn)和靈活應(yīng)用的特點(diǎn),很好的提供這一技術(shù)平臺(tái) [8]。對(duì)于樣本的識(shí)別,目前相關(guān)研究中采用最多的是 BP 神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)方法,但 BP 神經(jīng)網(wǎng)絡(luò)存在固有的收斂速度慢 ,容易陷入局部最小點(diǎn)的缺陷。支持向量機(jī)是由 Vapnik 最初在統(tǒng)計(jì)學(xué)習(xí)理論的基礎(chǔ)上建立起來的一種非常有力的機(jī)器學(xué)習(xí)方法,是一種新穎的人工智能技術(shù),目前在信號(hào)處理、系統(tǒng)辨識(shí)與建模、先進(jìn)控制和軟測量等領(lǐng)域都得到了廣泛的應(yīng)用 [9]。支持向量機(jī)中的參數(shù)較多,對(duì)其的選擇極大程度上決定了分類器的復(fù)雜性、泛化能力及魯棒性,所以參數(shù)尋優(yōu)的意義尤為重大。許多尋優(yōu)算法都已應(yīng)用到了支持向量機(jī)參數(shù)優(yōu)化問題當(dāng)中,比如網(wǎng)格點(diǎn)法、K 折交叉驗(yàn)證法、梯度算法、遺傳算法、粒子群算法、蟻群算法和模擬退火算法等 [4]。二、研究主要成果 本設(shè)計(jì)主要基于 MATLAB 分析平臺(tái),實(shí)現(xiàn)對(duì) EEG 信號(hào)的分析和處理,從而提取相關(guān)的信息,以供研究人員進(jìn)行科學(xué)研究,對(duì)臨床醫(yī)學(xué)和認(rèn)知科學(xué)領(lǐng)域具有重要的參考價(jià)值和科學(xué)意義。首先需完成 EEG 信號(hào) CNT 文件的讀取和顯示,對(duì)大容量數(shù)據(jù)進(jìn)行分段、壓縮或者改變采樣頻率以減小數(shù)據(jù)量,方便處理。同時(shí)進(jìn)行基線的調(diào)整,壞數(shù)據(jù)的剔除等工作。然后基于特定信號(hào)源編碼與 EEG 信號(hào)作相關(guān)分析,得出主成分信號(hào)。主成分分析是一種通過降維技術(shù)把多個(gè)變量化為少數(shù)幾個(gè)主成分(即綜合變量)的統(tǒng)計(jì)分析方法。這些主成份能夠反映原始變量的絕大部分信息,它們通常表示為原始變量的某種線性組合。再者嘗試不同信號(hào)變換,尋出關(guān)聯(lián)事件類型下的最大相關(guān)信號(hào)特征。主要有合并行為數(shù)據(jù)、腦電預(yù)覽、偽跡剔除或矯正、數(shù)字濾波、腦電分段、基線校正、去除偽跡、疊加平均、數(shù)字濾波和平滑化處理、總平均、波形識(shí)別等步驟。最后利用 SVM,PLS 等分析方法,對(duì)信號(hào)特征進(jìn)行關(guān)聯(lián)匹配,尋找最優(yōu)方法和參數(shù)。支持向量機(jī)就是首先通過用內(nèi)積函數(shù)定義的非線性變換將輸入空間變換到一個(gè)高維空間,在這個(gè)空間中求(廣義) 最優(yōu)分類面。SVM 分類函數(shù)形式上類似于一個(gè)神經(jīng)網(wǎng)絡(luò),輸出是中間節(jié)點(diǎn)的線性組合,每個(gè)中間節(jié)點(diǎn)對(duì)應(yīng)一個(gè)支持向量通過把原問題轉(zhuǎn)化為對(duì)偶問題,計(jì)算的復(fù)雜度不再取決于空間維數(shù),而是取決于樣本數(shù),尤其是樣本中的支持向量數(shù)。這些特點(diǎn)使有效地對(duì)付高維問題成為可能。在最優(yōu)分類面中采用適當(dāng)?shù)膬?nèi)積函數(shù)就可以實(shí)現(xiàn)某一非線性變換后的線性分類,而計(jì)算復(fù)雜度卻沒有增加 [5]。三、發(fā)展趨勢 腦電信號(hào)中包含了大量的生理與疾病信息。在臨床醫(yī)學(xué)方面,腦電信號(hào)處理不僅可為某些腦疾病提供診斷依據(jù),而且還為某些腦疾病提供了有效的治療手段。在工程應(yīng)用方面,人們也嘗試?yán)媚X電信號(hào)實(shí)現(xiàn)腦-計(jì)算機(jī)接口(BCI),利用人對(duì)不同的感覺、運(yùn)動(dòng)或認(rèn)知活動(dòng)的腦電的不同,通過對(duì)腦電信號(hào)的有效的提取和分類達(dá)到某種控制目的。但由于腦電信號(hào)是不具備各態(tài)歷經(jīng)性的非平穩(wěn)隨機(jī)信號(hào),而且其背景噪聲也很強(qiáng),因此腦電信號(hào)的分析和處理一直是非常吸引人但又是具有相當(dāng)難度的研究課題 [2]。腦電信號(hào)是明顯的非平穩(wěn)性信號(hào),從 20 年代檢測到腦電信號(hào)以來,雖然已作了大量的工作,但長期以來還沒有突破性的進(jìn)展。隨著信號(hào)處理方法的不斷發(fā)展,更多更有效的分析方法在腦電信號(hào)分析中的應(yīng)用,人們對(duì)于腦電活動(dòng)機(jī)理將有進(jìn)一步的認(rèn)識(shí),也必將為臨床醫(yī)學(xué)和基礎(chǔ)醫(yī)學(xué)的發(fā)展作出新的貢獻(xiàn) [2]。由于統(tǒng)計(jì)學(xué)習(xí)理論和支持向量機(jī)建立了一套較好的有限樣本下機(jī)器學(xué)習(xí)的理論框架和通用方法,既有嚴(yán)格的理論基礎(chǔ),又能較好地解決小樣本、非線性、高維數(shù)和局部極小點(diǎn)等實(shí)際問題,因此成為九十年代末發(fā)展最快的研究方向之一,其核心思想就是學(xué)習(xí)機(jī)器要與有限的訓(xùn)練樣本相適應(yīng)。統(tǒng)計(jì)學(xué)習(xí)理論雖然已經(jīng)提出多年,但從它自身趨向成熟和被廣泛重視到現(xiàn)在畢竟才只有幾年的時(shí)間,其中還有很多尚未解決或尚未充分解決的問題,在應(yīng)用方面的研究更是剛剛開始。這是一個(gè)十分值得大力研究的領(lǐng)域 [5]。四、存在問題 EEGLAB 統(tǒng)計(jì)方法具有局限性:1、結(jié)果不易顯著。2、進(jìn)行多因素統(tǒng)計(jì)分析存在局限性(無法探討交互作用) 。為了研究學(xué)習(xí)過程一致收斂的速度和推廣性,統(tǒng)計(jì)學(xué)習(xí)理論定義了一系列有關(guān)函數(shù)集學(xué)習(xí)性能的指標(biāo),其中最重要的是 V C 維(Vapnik-Cherv onenkis Dimension)。模式識(shí)別方法中 V C 維的直觀定義是:對(duì)一個(gè)指示函數(shù)集,如果存在 h 個(gè)樣本能夠被函數(shù)集中的函數(shù)按所有可能的形式分開,則稱函數(shù)集能夠把 h 個(gè)樣本打散;函數(shù)集的 VC 維就是它能打散的最大樣本數(shù)目 h。若對(duì)任意數(shù)目的樣本都有函數(shù)能將它們打散,則函數(shù)集的 VC 維是無窮大,有界實(shí)函數(shù)的 VC 維可以通過用一定的閾值將它轉(zhuǎn)化成指示函數(shù)來定義。 VC 維反映了函數(shù)集的學(xué)習(xí)能力,VC 維越大則學(xué)習(xí)機(jī)器越復(fù)雜(容量越大 )。遺憾的是,目前尚沒有通用的關(guān)于任意函數(shù)集 VC 維計(jì)算的理論,只對(duì)一些特殊的函數(shù)集知道其 VC維。對(duì)于一些比較復(fù)雜的學(xué)習(xí)機(jī)器(如神經(jīng)網(wǎng)絡(luò)),其 VC 維除了與函數(shù)集(神經(jīng)網(wǎng)結(jié)構(gòu))有關(guān)外,還受學(xué)習(xí)算法等的影響,其確定更加困難。對(duì)于給定的學(xué)習(xí)函數(shù)集,如何(用理論或?qū)嶒?yàn)的方法)計(jì)算其 VC 維是當(dāng)前統(tǒng)計(jì)學(xué)習(xí)理論中有待研究的一個(gè)問題 [5]。關(guān)于如何選擇支持向量機(jī)的多分類方法尚沒有一個(gè)系統(tǒng)的、有指導(dǎo)意義的簡捷方法。方法原理各不相同,各有優(yōu)缺點(diǎn),在不同場合有不同表現(xiàn),具體問題應(yīng)當(dāng)選用何種方法尚未有較好的選擇標(biāo)準(zhǔn),就其使用時(shí)的簡便性來說,一對(duì)多法相對(duì)使用廣泛。在選擇最佳多分類方法時(shí)仍需對(duì)各種方法進(jìn)行試驗(yàn)挑選。所以在支持向量機(jī)應(yīng)用于 EEG 模式識(shí)別的問題上仍有很大的研究空間,需要從 BCI 系統(tǒng)整體出發(fā),考慮到樣本的選擇方法,分類器的可靠性評(píng)判等方面建立多類模式識(shí)別的評(píng)判系統(tǒng) [4]。雖然 SVM 方法在理論上具有很突出的優(yōu)勢,但與其理論研究相比,應(yīng)用研究尚相對(duì)比較滯后,目前只有較有限的實(shí)驗(yàn)研究報(bào)道,且多屬仿真和對(duì)比實(shí)驗(yàn)。SVM 的應(yīng)用應(yīng)該是一個(gè)大有作為的方向。如何調(diào)整支持向量機(jī)分類器的參數(shù), 使得在限定一類錯(cuò)誤率的前提下使另一類的錯(cuò)誤率達(dá)到最小也是我們下一步的工作 [11]。誘發(fā)電位儀這種設(shè)備,它的優(yōu)點(diǎn)在于它能把微弱的信號(hào)通過疊加使之從無序的自發(fā)電位中突出出來,從而人們能夠識(shí)別它。但是它的優(yōu)點(diǎn)同時(shí)也就是它的缺點(diǎn),須知,人的心理是一種活動(dòng)的過程,而活動(dòng)過程是不能靜止的,靜止了就不是心理活動(dòng)了,把一個(gè)靜止的狀態(tài)連續(xù)疊加 30-50 次,它從自發(fā)電位中確實(shí)突出出來了,但可惜的是,它不是我們所希望看到的那種連貫的心理活動(dòng)了。比如說,我們令一個(gè)被試觀看一張恐怖的圖片,被試產(chǎn)生了恐懼反應(yīng),這種恐懼信號(hào)太弱,不足以被識(shí)別出來,為了是它從自發(fā)電位中突出出來,就需要疊加,可是當(dāng)?shù)诙慰吹剿鼤r(shí),被試的恐懼感還是第一次那樣嗎?第三、第四更不是,最后會(huì)不會(huì)對(duì)連續(xù)觀察恐懼圖片產(chǎn)生厭惡感。而且,引起誘發(fā)電位的那種刺激呈現(xiàn)之后,一般是觀察 300 毫秒以內(nèi)的變化,研究者們觀察最多的是 P300,須知, 300 毫秒也就是不到一秒鐘的三分之一的時(shí)間,只相當(dāng)于選擇反應(yīng)時(shí)的時(shí)間長度,如此短暫的時(shí)間,能夠允許復(fù)雜的心理活動(dòng)在人們的意識(shí)里明明白白地產(chǎn)生并保留一會(huì)兒嗎?300 毫秒里能完成的心理活動(dòng),只是復(fù)雜心理活動(dòng)鏈條中的一剎那的片段,不是通常一以上的心理活動(dòng),因此,用這種方法研究復(fù)雜的心理現(xiàn)象,猶如用照片來反映一個(gè)人對(duì)事物的態(tài)度一樣,只能是管中窺豹,只見一斑。腦電技術(shù)與心理學(xué)研究的結(jié)合還有很長一段路要走。5、參考文獻(xiàn) [1] 劉克球,呂以喬,以氏.生物醫(yī)學(xué)電子學(xué)[M].北京大學(xué)出版社,1988.[2] 季忠,秦樹人,彭麗玲.腦電信號(hào)的現(xiàn)代分析方法[J].重慶大學(xué)學(xué)報(bào),2002,25(9) :108-112.[3] 趙侖.ERPs 實(shí)驗(yàn)教程[M].南京:東南大學(xué)出版社,2010.7.[4] 李耀楠,張小棟,王云霞.支持向量多分類機(jī)的多類復(fù)雜手操作 EEG 信號(hào)模式識(shí)別[J].機(jī)械與電子,2009,12(7) .[5] 張學(xué)工.關(guān)于統(tǒng)計(jì)學(xué)習(xí)理論與支持向量機(jī)[J].自動(dòng)化學(xué)報(bào), 2000,26(1) :32-42.[6] 楊仁桓,宋愛國,徐寶國.基于諧波小波包變換的腦電波基本節(jié)律分析[J].東南大學(xué)學(xué)報(bào),2008,38(6) :996-999 .[7] 毛大偉.分尺度復(fù)雜性及希爾伯特—黃變換在腦電分析中的應(yīng)用.浙江大學(xué),2005.[8] 董婷.支持向量機(jī)分類算法在 MATLAB 環(huán)境下的實(shí)現(xiàn)[J] .榆林學(xué)院學(xué)報(bào),2008,18(4):94-96.[9] 周紅標(biāo).基于小波包變換和最小二乘支持向量機(jī)的癲癰腦電信號(hào)識(shí)別.淮陰工學(xué)院電子與電氣工程學(xué)院,2011.[10] STEVEN J.LUCK.事件相關(guān)電位基礎(chǔ)[M].上海:華東師范大學(xué)出版社,2009.[11] 李鋼,王蔚,張勝.支持向量機(jī)在腦電信號(hào)分類中的應(yīng)用[J].計(jì)算機(jī)應(yīng)用,2006,26(6): 1431-1436.[12] 賈花萍.基于 PNN 神經(jīng)網(wǎng)絡(luò)的 EEG 信號(hào)分類方法研究[J] .河南科學(xué),2011,29(7):846-849.
收藏
資源目錄
編號(hào):559195
類型:共享資源
大小:61.57MB
格式:ZIP
上傳時(shí)間:2019-05-26
30
積分
- 關(guān) 鍵 詞:
-
eeg
信號(hào)
matlab
分析
平臺(tái)
設(shè)計(jì)
模式識(shí)別
部分
部份
畢業(yè)論文
開題
報(bào)告
講演
呈文
文獻(xiàn)
綜述
- 資源描述:
-
EEG信號(hào)MATLAB分析平臺(tái)設(shè)計(jì)-模式識(shí)別部分【含畢業(yè)論文、開題報(bào)告、文獻(xiàn)綜述】,eeg,信號(hào),matlab,分析,平臺(tái),設(shè)計(jì),模式識(shí)別,部分,部份,畢業(yè)論文,開題,報(bào)告,講演,呈文,文獻(xiàn),綜述
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。