2019-2020年高三數(shù)學(xué)大一輪復(fù)習(xí) 5.3平面向量的數(shù)量積教案 理 新人教A版 .DOC
《2019-2020年高三數(shù)學(xué)大一輪復(fù)習(xí) 5.3平面向量的數(shù)量積教案 理 新人教A版 .DOC》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)大一輪復(fù)習(xí) 5.3平面向量的數(shù)量積教案 理 新人教A版 .DOC(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)大一輪復(fù)習(xí) 5.3平面向量的數(shù)量積教案 理 新人教A版 xx高考會(huì)這樣考 1.考查兩個(gè)向量的數(shù)量積的求法;2.利用兩個(gè)向量的數(shù)量積求向量的夾角、向量的模;3.利用兩個(gè)向量的數(shù)量積證明兩個(gè)向量垂直. 復(fù)習(xí)備考要這樣做 1.理解數(shù)量積的意義,掌握求數(shù)量積的各種方法;2.理解數(shù)量積的運(yùn)算性質(zhì);3.利用數(shù)量積解決向量的幾何問(wèn)題. 1. 平面向量的數(shù)量積 已知兩個(gè)非零向量a和b,它們的夾角為θ,則數(shù)量|a||b|cos θ叫做a和b的數(shù)量積(或內(nèi)積),記作ab=|a||b|cos θ. 規(guī)定:零向量與任一向量的數(shù)量積為_(kāi)_0__. 兩個(gè)非零向量a與b垂直的充要條件是ab=0,兩個(gè)非零向量a與b平行的充要條件是ab=|a||b|. 2. 平面向量數(shù)量積的幾何意義 數(shù)量積ab等于a的長(zhǎng)度|a|與b在a的方向上的投影|b|cos θ的乘積. 3. 平面向量數(shù)量積的重要性質(zhì) (1)ea=ae=|a|cos θ; (2)非零向量a,b,a⊥b?ab=0; (3)當(dāng)a與b同向時(shí),ab=|a||b|; 當(dāng)a與b反向時(shí),ab=-|a||b|,aa=a2,|a|=; (4)cos θ=; (5)|ab|__≤__|a||b|. 4. 平面向量數(shù)量積滿足的運(yùn)算律 (1)ab=ba(交換律); (2)(λa)b=λ(ab)=a(λb)(λ為實(shí)數(shù)); (3)(a+b)c=ac+bc. 5. 平面向量數(shù)量積有關(guān)性質(zhì)的坐標(biāo)表示 設(shè)向量a=(x1,y1),b=(x2,y2),則ab=x1x2+y1y2,由此得到 (1)若a=(x,y),則|a|2=x2+y2或|a|=. (2)設(shè)A(x1,y1),B(x2,y2),則A、B兩點(diǎn)間的距離|AB|=||=. (3)設(shè)兩個(gè)非零向量a,b,a=(x1,y1),b=(x2,y2),則a⊥b?x1x2+y1y2=0. [難點(diǎn)正本 疑點(diǎn)清源] 1. 向量的數(shù)量積是一個(gè)實(shí)數(shù) 兩個(gè)向量的數(shù)量積是一個(gè)數(shù)量,這個(gè)數(shù)量的大小與兩個(gè)向量的長(zhǎng)度及其夾角的余弦值有關(guān),在運(yùn)用向量的數(shù)量積解題時(shí),一定要注意兩向量夾角的范圍. 2. ab>0是兩個(gè)向量ab夾角為銳角的必要不充分條件.因?yàn)槿簟碼,b〉=0,則ab>0,而a,b夾角不是銳角;另外還要注意區(qū)分△ABC中,、的夾角與角B的關(guān)系. 3. 計(jì)算數(shù)量積時(shí)利用數(shù)量積的幾何意義是一種重要方法. 1. 已知向量a和向量b的夾角為135,|a|=2,|b|=3,則向量a和向量b的數(shù)量積ab=___. 答案 -3 解析 ab=|a||b|cos 135=23=-3. 2. 已知a⊥b,|a|=2,|b|=3,且3a+2b與λa-b垂直,則實(shí)數(shù)λ的值為_(kāi)_______. 答案 解析 由a⊥b知ab=0. 又3a+2b與λa-b垂直, ∴(3a+2b)(λa-b)=3λa2-2b2 =3λ22-232=0.∴λ=. 3. 已知a=(2,3),b=(-4,7),則a在b方向上的投影為_(kāi)_____. 答案 解析 設(shè)a和b的夾角為θ,|a|cos θ=|a| ===. 4. (xx遼寧)已知向量a=(2,1),b=(-1,k),a(2a-b)=0,則k等于 ( ) A.-12 B.-6 C.6 D.12 答案 D 解析 由已知得a(2a-b)=2a2-ab =2(4+1)-(-2+k)=0,∴k=12. 5. (xx陜西)設(shè)向量a=(1,cos θ)與b=(-1,2cos θ)垂直,則cos 2θ等于 ( ) A. B. C.0 D.-1 答案 C 解析 利用向量垂直及倍角公式求解. a=(1,cos θ),b=(-1,2cos θ). ∵a⊥b,∴ab=-1+2cos2θ=0, ∴cos2θ=,∴cos 2θ=2cos2θ-1=1-1=0. 題型一 平面向量的數(shù)量積的運(yùn)算 例1 (1)在Rt△ABC中,∠C=90,AC=4,則等于 ( ) A.-16 B.-8 C.8 D.16 (2)若向量a=(1,1),b=(2,5),c=(3,x),滿足條件(8a-b)c=30,則x等于( ) A.6 B.5 C.4 D.3 思維啟迪:(1)由于∠C=90,因此選向量,為基底. (2)先算出8a-b,再由向量的數(shù)量積列出方程,從而求出x. 答案 (1)D (2)C 解析 (1)=(-)(-) =-+=16. (2)∵a=(1,1),b=(2,5), ∴8a-b=(8,8)-(2,5)=(6,3). 又∵(8a-b)c=30,∴(6,3)(3,x)=18+3x=30. ∴x=4. 探究提高 求兩個(gè)向量的數(shù)量積有三種方法:利用定義;利用向量的坐標(biāo)運(yùn)算;利用數(shù)量積的幾何意義.本題從不同角度創(chuàng)造性地解題,充分利用了已知條件. (xx北京)已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E是AB邊上的動(dòng)點(diǎn),則的值為_(kāi)_______;的最大值為_(kāi)_______. 答案 1 1 解析 方法一 以射線AB,AD為x軸,y軸的正方向建立平面直角坐標(biāo)系,則 A(0,0),B(1,0),C(1,1),D(0,1),則 E(t,0),t∈[0,1],則=(t,-1),=(0,-1),所以=(t,-1)(0,-1)=1. 因?yàn)椋?1,0),所以=(t,-1)(1,0)=t≤1, 故的最大值為1. 方法二 由圖知,無(wú)論E點(diǎn)在哪個(gè)位置,在方向上的投影都是CB=1, ∴=||1=1, 當(dāng)E運(yùn)動(dòng)到B點(diǎn)時(shí),在方向上的投影最大即為DC=1,∴()max=||1=1. 題型二 向量的夾角與向量的模 例2 已知|a|=4,|b|=3,(2a-3b)(2a+b)=61, (1)求a與b的夾角θ; (2)求|a+b|; (3)若=a,=b,求△ABC的面積. 思維啟迪:運(yùn)用數(shù)量積的定義和|a|=. 解 (1)∵(2a-3b)(2a+b)=61, ∴4|a|2-4ab-3|b|2=61. 又|a|=4,|b|=3,∴64-4ab-27=61,∴ab=-6. ∴cos θ===-. 又0≤θ≤π,∴θ=. (2)可先平方轉(zhuǎn)化為向量的數(shù)量積. |a+b|2=(a+b)2=|a|2+2ab+|b|2 =42+2(-6)+32=13, ∴|a+b|=. (3)∵與的夾角θ=,∴∠ABC=π-=. 又||=|a|=4,||=|b|=3, ∴S△ABC=||||sin∠ABC=43=3. 探究提高 (1)在數(shù)量積的基本運(yùn)算中,經(jīng)常用到數(shù)量積的定義、模、夾角等公式,尤其對(duì)|a|=要引起足夠重視,它是求距離常用的公式. (2)要注意向量運(yùn)算律與實(shí)數(shù)運(yùn)算律的區(qū)別和聯(lián)系.在向量的運(yùn)算中,靈活運(yùn)用運(yùn)算律,達(dá)到簡(jiǎn)化運(yùn)算的目的. (1)已知向量a、b滿足|a|=1,|b|=4,且ab=2,則a與b的夾角為( ) A. B. C. D. (2)已知向量a=(1,),b=(-1,0),則|a+2b|等于 ( ) A.1 B. C.2 D.4 答案 (1)C (2)C 解析 (1)∵cos〈a,b〉==, ∴〈a,b〉=. (2)|a+2b|2=a2+4ab+4b2=4-41+4=4, ∴|a+2b|=2. 題型三 向量數(shù)量積的綜合應(yīng)用 例3 已知a=(cos α,sin α),b=(cos β,sin β)(0<α<β<π). (1)求證:a+b與a-b互相垂直; (2)若ka+b與a-kb的模相等,求β-α.(其中k為非零實(shí)數(shù)) 思維啟迪:(1)證明兩向量互相垂直,轉(zhuǎn)化為計(jì)算這兩個(gè)向量的數(shù)量積問(wèn)題,數(shù)量積為零即得證. (2)由模相等,列等式、化簡(jiǎn). (1)證明 ∵(a+b)(a-b)=a2-b2=|a|2-|b|2 =(cos2α+sin2α)-(cos2β+sin2β)=0, ∴a+b與a-b互相垂直. (2)解 ka+b=(kcos α+cos β,ksin α+sin β), a-kb=(cos α-kcos β,sin α-ksin β), |ka+b|=, |a-kb|=. ∵|ka+b|=|a-kb|,∴2kcos(β-α)=-2kcos(β-α). 又k≠0,∴cos(β-α)=0. ∵0<α<β<π,∴0<β-α<π,∴β-α=. 探究提高 (1)當(dāng)向量a與b是坐標(biāo)形式給出時(shí),若證明a⊥b,則只需證明ab=0?x1x2+y1y2=0. (2)當(dāng)向量a,b是非坐標(biāo)形式時(shí),要把a(bǔ),b用已知的不共線向量作為基底來(lái)表示且不共線的向量要知道其模與夾角,從而進(jìn)行運(yùn)算證明ab=0. (3)數(shù)量積的運(yùn)算中,ab=0?a⊥b中,是對(duì)非零向量而言的,若a=0,雖然有ab=0,但不能說(shuō)a⊥b. 已知平面向量a=(,-1),b=. (1)證明:a⊥b; (2)若存在不同時(shí)為零的實(shí)數(shù)k和t,使c=a+(t2-3)b,d=-ka+tb,且c⊥d,試求函數(shù)關(guān)系式k=f(t). (1)證明 ∵ab=-1=0, ∴a⊥b. (2)解 ∵c=a+(t2-3)b,d=-ka+tb,且c⊥d, ∴cd=[a+(t2-3)b](-ka+tb) =-ka2+t(t2-3)b2+[t-k(t2-3)]ab=0, 又a2=|a|2=4,b2=|b|2=1,ab=0, ∴cd=-4k+t3-3t=0, ∴k=f(t)= (t≠0). 三審圖形抓特點(diǎn) 典例:(4分)如圖所示,把兩塊斜邊長(zhǎng)相等的直角三角板拼在一起, 若=x+y,則x=________, y=________. 審題路線圖 圖形有一副三角板構(gòu)成 ↓(注意一副三角板的特點(diǎn)) 令|AB|=1,|AC|=1 ↓(一副三角板的兩斜邊等長(zhǎng)) |DE|=|BC|= ↓(非等腰三角板的特點(diǎn)) |BD|=|DE|sin 60== ↓(注意∠ABD=45+90=135) 在上的投影即為x ↓x=|AB|+|BD|cos 45=1+=1+ ↓在上的投影即為y ↓y=|BD|sin 45==. 解析 方法一 結(jié)合圖形特點(diǎn),設(shè)向量,為單位向量,由=x+y知,x,y分別為在,上的投影.又|BC|=|DE|=, ∴||=||sin 60=. ∴在上的投影 x=1+cos 45=1+=1+, 在上的投影y=sin 45=. 方法二 ∵=x+y,又=+, ∴+=x+y,∴=(x-1)+y. 又⊥,∴=(x-1)2. 設(shè)||=1,則由題意||=||=. 又∠BED=60,∴||=.顯然與的夾角為45. ∴由=(x-1)2, 得1cos 45=(x-1)12.∴x=+1. 同理,在=(x-1)+y兩邊取數(shù)量積可得y=. 答案 1+ 溫馨提醒 突破本題的關(guān)鍵是,要抓住圖形的特點(diǎn)(圖形由一副三角板構(gòu)成).根據(jù)圖形的特點(diǎn),利用向量分解的幾何意義,求解方便快捷.方法二是原試題所給答案,較方法一略顯繁雜. 方法與技巧 1. 計(jì)算數(shù)量積的三種方法:定義、坐標(biāo)運(yùn)算、數(shù)量積的幾何意義,要靈活選用,和圖形有關(guān)的不要忽略數(shù)量積幾何意義的應(yīng)用. 2. 求向量模的常用方法:利用公式|a|2=a2,將模的運(yùn)算轉(zhuǎn)化為向量的數(shù)量積的運(yùn)算. 3. 利用向量垂直或平行的條件構(gòu)造方程或函數(shù)是求參數(shù)或最值問(wèn)題常用的方法與技巧. 失誤與防范 1. (1)0與實(shí)數(shù)0的區(qū)別:0a=0≠0,a+(-a)=0≠0,a0=0≠0;(2)0的方向是任意的,并非沒(méi)有方向,0與任何向量平行,我們只定義了非零向量的垂直關(guān)系. 2. ab=0不能推出a=0或b=0,因?yàn)閍b=0時(shí),有可能a⊥b. 3. ab=ac(a≠0)不能推出b=c,即消去律不成立. A組 專項(xiàng)基礎(chǔ)訓(xùn)練 (時(shí)間:35分鐘,滿分:57分) 一、選擇題(每小題5分,共20分) 1. (xx遼寧)已知向量a=(1,-1),b=(2,x),若ab=1,則x等于 ( ) A.-1 B.- C. D.1 答案 D 解析 ab=(1,-1)(2,x)=2-x=1?x=1. 2. (xx重慶)設(shè)x,y∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,則|a+b|等于 ( ) A. B. C.2 D.10 答案 B 解析 ∵a=(x,1),b=(1,y),c=(2,-4), 由a⊥c得ac=0,即2x-4=0,∴x=2. 由b∥c,得1(-4)-2y=0,∴y=-2. ∴a=(2,1),b=(1,-2). ∴a+b=(3,-1),∴|a+b|==. 3. 已知向量a=(1,2),b=(2,-3).若向量c滿足(c+a)∥b,c⊥(a+b),則c等于( ) A. B. C. D. 答案 D 解析 設(shè)c=(x,y),則c+a=(x+1,y+2), 又(c+a)∥b,∴2(y+2)+3(x+1)=0.① 又c⊥(a+b),∴(x,y)(3,-1)=3x-y=0.② 聯(lián)立①②解得x=-,y=-. 4. 在△ABC中,AB=3,AC=2,BC=,則等于 ( ) A.- B.- C. D. 答案 D 解析 由于=||||cos∠BAC =(||2+||2-||2)=(9+4-10)=. 二、填空題(每小題5分,共15分) 5. (xx課標(biāo)全國(guó))已知向量a,b夾角為45,且|a|=1,|2a-b|=,則|b|=________. 答案 3 解析 ∵a,b的夾角為45,|a|=1, ∴ab=|a||b|cos 45=|b|, |2a-b|2=4-4|b|+|b|2=10,∴|b|=3. 6. (xx浙江)在△ABC中,M是BC的中點(diǎn),AM=3,BC=10,則=________. 答案 -16 解析 如圖所示, =+, =+ =-, ∴=(+)(-) =2-2=||2-||2=9-25=-16. 7. 已知a=(2,-1),b=(λ,3),若a與b的夾角為鈍角,則λ的取值范圍是__________. 答案 (-∞,-6)∪ 解析 由ab<0,即2λ-3<0,解得λ<,由a∥b得: 6=-λ,即λ=-6.因此λ<,且λ≠-6. 三、解答題(共22分) 8. (10分)已知a=(1,2),b=(-2,n) (n>1),a與b的夾角是45. (1)求b; (2)若c與b同向,且a與c-a垂直,求c. 解 (1)ab=2n-2,|a|=,|b|=, ∴cos 45==,∴3n2-16n-12=0, ∴n=6或n=-(舍),∴b=(-2,6). (2)由(1)知,ab=10,|a|2=5. 又c與b同向,故可設(shè)c=λb (λ>0),(c-a)a=0, ∴λba-|a|2=0,∴λ===, ∴c=b=(-1,3). 9. (12分)設(shè)兩個(gè)向量e1、e2滿足|e1|=2,|e2|=1,e1、e2的夾角為60,若向量2te1+7e2與向量e1+te2的夾角為鈍角,求實(shí)數(shù)t的取值范圍. 解 ∵e1e2=|e1||e2|cos 60=21=1, ∴(2te1+7e2)(e1+te2) =2te+7te+(2t2+7)e1e2 =8t+7t+2t2+7=2t2+15t+7. 由已知得2t2+15t+7<0,解得-7- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)大一輪復(fù)習(xí) 5.3平面向量的數(shù)量積教案 新人教A版 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 5.3 平面 向量 數(shù)量 教案 新人
鏈接地址:http://m.appdesigncorp.com/p-2610907.html