缸體精銑兩側(cè)面機(jī)床總體設(shè)計(jì)及夾具設(shè)計(jì)【銑兩側(cè)面】【說(shuō)明書(shū)+CAD+3D】
購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,資料完整,充值下載可得到資源目錄里的所有文件?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
International Journal of Infrared and Millimeter Waves, Vol. 13, No. 9, 1992 QUASI-OPTICAL MIRRORS MADE BY A CONVENTIONAL MILLING MACHINE Daniel Boucher, Jean Burie, Robin Bocquet, and Weidong Chen Laboratoire de Spectroscopie Hertzienne Universitd des Sciences et Technologies de Lille 59655 Villeneuve dAscq, France Received June 1, 1992 Introduction In the submillimeter-wave or far-infrared domain, transmissive optics have significantly higher losses than reflective optics. It results from the relatively high absorption of dielectric materials and from the difficulty of manufacturing anti-reflection layers. For Gaussian beam transformation, metal reflector mirrors provide usually a better solution. Reflective focusing mirrors offer additional advantages of high power handling capability and broad band operation. N. R. ERICKSON presented some years ago a very elegant method needing only a conventional milling machine to cut off-axis mirrors 1. This method has been exploited by a lot of workers in the far-infrared field and remains very popular. It allows the development of optical components at moderate cost and is free from the step effect inherently associated to numerical milling processes. In this paper, we present some modifications and corrections to the original ERICKSONs method. Applications to off-axis parabolic and ellipsoidal mirrors are examined in details. By a careful estimation of the error function and some modifications to the method, it is shown that diffraction-limited mirrors of larger size (i.e. of lower focal ratio) than expected in the original work can easily be manufactured. Realisation of the conic section Using ERICKSONs notations, the conical section generated by a milling machine is described by: r2(z)=(ztan0+S)2+R2-(z/cosO)2l/2+d 2 ( 1 ) 1395 0195-9271/92/0900-1395506.50/0 9 1992 Plenum Publishing Corporation 1396 Boucher et al. Fig. I represents the milling machine configuration . The mill head is tipped from usual vertical axis by an angle (90 The axis of the rotary table is defined as the Z axis; the distance between the plane of the cutter and the rotary table axis is measured as S in the Z=0 plane; d is the distance between the vertical plane containing the mill axis and the axis of the rotary table arm, and R is the radius of the cutter orbit. In any case the focal point is located at Z=0 on the z axis. Z z=o 90 . mill axis cutter rr piece to cut side view rotary table arm rotarg table axis mill axis projection | i 1 top view Fig. I Schematic of the milling machine setup Equation (1) is double valued, but as will be seen below only -d corresponds to a true conical function. The z series expansion around zero point is: r2(z)=S2+(R-d)2+(2Stane)z+(d/Rcos2e)-lz2+ (d/4 R3cos4O)z4+(d/8 R5cos6O)z6+ . + e21n2k25/16(Rcose)2(k-1)-1z2 k (2) where e2=d/(Rcos2e) and k=2, 3 . n. This series can be compared with the general expression of conical functions expressed in the focal representation 2: Quasi.Oplical Mirrors 1397 r2(z)=e2h2+(2e2h)z+(e2-1)z 2 (3) This expression confirms the previously mentionned observation done by ERICKSON relative to the sign of d. In (3), e is the so called excentricity parameter, the value of which is: e=l for a parabola el for a hyperbola and h fixes the position of the conic curve directrix. It clearly appears that a surface of revolution can be cutted with an accuracy limited by the sum E of higher order terms in the development function, i.e.: oo E= /_,En (4) n=2 where En=e21n2n25/16( Rcos0)2(n-1 )-1 z 2 n The convergence of this error function can be easily demonstrated for zRcose. So the machining error can be minimized by a proper choice of parameters R, e and D (mirror dimension). Any conic section can be fitted to equation (2) which is expressed in mechanical parameters. Three simultaneous nonlinear equations have to be solved. e2=d/(Rcos2e) ( 5 ) h=Stane/e 2 ( 6 ) e2h2=S2+(R-d) 2 (7) As an evidence this system does not admit a unique solution. An additional constraint can be added in order to fix a threshold value for the E function. A realistic estimation can be obtained on the basis of simple considerations. For diffraction-limited focusing mirrors, the rms surface roughness must be less than ./50 3. A peak surface error of less than X/17 is then required to closely approach ideal performance 4. Although the problem is different in the present case, where errors are not randomly distributed, an equivalent limit can reasonably situate the regime of operation in diffraction-limited conditions. The peak error Ar is then described in the form: 1398 Boucher et aL yielding Ar=lr(true conic curve)-r(actual generated curve)l (8) Ar = E/2r = Eoz4/2r where Eo=d/(4R3cos40) (9) According to the condition for diffraction-limited operation we have: Armax k/17 or EO 2.f/D 4 (10) where D is the mirror diameter. (5), (6), (7) and (9) give four equations combining mechanical parameters and mirrors parameters: 4 Eoh 2=( 1 +tan2O-e2)2tan20/(1 +tan2O)(tan20-e2) (11) S=e2h/tane ( 1 2 ) R=e/(2coseqEo) ( 1 3) d=Re2cos2e ( 1 4 ) This system can be exactly solved. For given Eo, e and h, O can be determined, then S, R, and d so do. Equation (13) reveals that R has to be taken as large as possible. In practice its value will be limited by mechanical and vibrational constraints. In our mechanical system R=100 mm is a maximum value. At this point another observation has to be done. We note that a null profile error is obtained for z=0 only, corresponding, for a parabola, to 90 off-axis mirrors. In case of elliptic surfaces the null error obviously corresponds to the same value z=0. As will be shown in more details below, it leads to a particular off-axis situation. The excentricity parameter e fixes the off- axis angle. The 90 off-axis situation cannot be reached. In his original work ERICKSON concluded on the possibility of machining profiles for any off-axis situation. This conclusion does not apply when the best achievable profile accuracy is needed. 90 off-axis paraboloidal mirrors As a first example we shall discuss the case of a paraboloidal mirror, 100 mm focal length, 90 off-axis, diffraction-limited up to 2500 GHz. The acceptable peak error will be k/17, close to 6 p.m. For a paraboloid: e=l and h=f(l+cos) where f is the effective focal length of the mirror and its off-axis angle. For a f/5 paraboloid the constraint (10) leads to: Quasi-Optical Mirrors 1399 E01.2510 -4 From equation (11), O must be taken equal to 47.5 S, R, d can then be determined by solving equations (12), (13), (14): S=91.5 mm, R=74.1 mm, and d=34.0 mm Using these values, a representation of the error function (8) is given by Fig. II. We can conclude that the device will be diffraction limited up to a diameter of 20 mm corresponding to f/D=5. Ar ( Lm) 8 I I I -10 0 10 Z (ram) Fig. II Error function for the 100 mm focal length parabolic mirror off-axis ellipsoidal mirrors From the ABCD law an ellipsoidal mirror can be treated as a simple focusing element with an equivalent focal length f given by: f=flf2/(fl+f2) fl, f2 are respectively the distance between focal points and the center of the cutted section of ellipsoidal surface (Fig. III). The focus is always located facing the center of the mirror to be cutted. So the off-axis angle is smaller than 90 The excentricity is given by: e=sin/(l+cos) 1400 Boucher et aL and where as previously stated, the couple of parameters fl-f2 totally defines the off-axis angle . The parameters can be expressed as: fl=f(l+cos), h=fl/sin, with Eo3. losses (%) 2. 1.5. .5. 0 0 2 ! i 4 6 f/D Fig. IV Variation in mirror off-axis losses with f/D 1402 Boucher et aL Conclusion A modified method for machining off-axis mirrors has been described. By a careful choice of machine parameters, revolution surface can be generated with a sufficient accuracy for ;L15 llm. A large set of spherical, paraboloidal and ellipsoidal mirrors, whose focal lengths are comprised between 50 mm and 900 mm, have been machined using the method. Focal ratio improving the uppest limit expected by ERICKSON have been manufactured. These optical devices have essentially been used in the development of our far-infrared heterodyne spectrometer. Due to the rather low source power achievable in these kind of intruments the greatest care has to be taken in the design of optical lines. The whole system will be described in a separate paper. It will be seen that powers losses in beam propagation have reached very low absolute levels, rarely exceeding 1 or 2%. Rfrences 1 N.R. ERICKSON, Off-axis mirror made using a conventional milling machine, Appl. Opt., 18, 956-957, 1979 2 G. GIRARD and A. LENTIN, Gomtrie/Mcanique, Hachette, 1964 3 P.F. GOLDSMITH, Quasi-optical techniques at millimeter and submillimeter wavelengths, Infrared and millimeter waves, 6, ch.5, 1982 4 J. RUZE, Antenna tolerance theory-A review, IEEE Prec., 54, 633-640, 1966 5 J.A. MURPHY, Distortion of a simple Gaussian beam on reflection from off-axis ellipsoidal mirrors, Int. J. Infrared and Millimeter Waves, 8, 1165-1187, 1987 6 J. LESURF, Millimetre-Wave Optics, Devices & Systems, Adam Hilger, Bristol and New York, 1990 u a1 vnullnull M ! F 5 h / C ? % d v K , a1 F I # null % K 1 1 oM 1 F 5 h / , Y V . M V ? / M h , r 1 pb P 5 v7 i 5 % b F 5 h v F 5 F 5 b a j d B b F m , F 7M m ; 7 , %5 7 null ; f _ 7 M L l q9 ; 7 ?= = s Y %null# a 2 = = b bB %m1 = B S = , j V 1 S null %6 +7 # M V V null , null+ & / 1 = , h null V nullnullB nullB 6 %null ) 6 + 7 # ) , 3 F S b 6 , 1 / M V F h ) | E 1 & / C , F V L b B / g 3 P , h , 4 3 r q, 7 O vv 3 , i 3 b l nullnull null B null) 發(fā)動(dòng)機(jī)缸孔止口加工精鏜頭設(shè)計(jì)制造 唐善洲 東風(fēng)汽車公司設(shè)備制造廠, 湖北十堰null 442022 K 1 :根據(jù)產(chǎn)品的技術(shù)要求,提出用缸體頂面控制缸孔止口深度加工的設(shè)計(jì)新思路b介紹加工缸孔止口 專用三軸浮動(dòng)精鏜頭工作原理,闡述了在裝配調(diào)試過(guò)程中出現(xiàn)的浮動(dòng)量大小不一,浮動(dòng)困難,浮動(dòng)量測(cè) 量不便等問(wèn)題解決方法b 1 o M :缸孔止口; 浮動(dòng)精鏜頭; 裝配; 調(diào)試 m s | : TG650null2: TK406 null D S M : A null c I | : 1001- 2265( 2002) 01- 0042- 03 m 1 null 8 , q m m 2 null h 9 m 1 null ? ! 9 / B H 8 d # d g F 1 L b L 1 p d g F , 7 ? M ,1 p F ! 9 d g F 5 , 8 7 ? n , 7 ? B b 1 p d g j , null 0. 02mm(n m 1) , m V , 8 j v d g j , . d Z E (B g ) e j Y b v S F 5 , % ! 9 h , 8 e F d g j b h H 1 L 1 o q B , 7 ? 1 1 L b 2 null h T h 9 m n m 2, h e m n m 3b h 7 S M d - , 9 T / $ w K - , % b g T / 9 $ w K - b , h 7 S M d d H , M d T / , h B Q M Q 8 _ M , , M d ) , h T M , i F d d g bF V , g 8 7 S g b g ) m 2 U H , 9 d g j X F ,N H ? _ - , h ? ? _ - M ,7 g L , 8 M , 7 Q 8 3 _ M L , T b H = B _ ! , d 8 W j ,V 7 d g F B b 42null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null F 5 1 F / m 3 null h m 4null _ d 3 null h 1 o , q / e 1) Q 8 e b Q 8 - F g , F , - d , O = d ,Y r m 1 p b 2) ! 9 / m 3 V , 9 , B bA / 1 p : T , 27 X M d , ? v b 9 S j M , F z , T ? M b ! 9 B , B ? / , _ , ! 9 1 p M . b = / V , , , ) e b V 100 , N _ ,G 1 p , e 2N = b e 0. 2mm = b 4 null k 1) - ! T a) , q b! b b) N _ G ,| q s F b c) Q 8 , - 1 j , M , q , a W # b d) , e b e) * , * Q 8 = d a W # , O _ g 1 b 2) _ Y V s m T V , n h M 1 K v u Y d Q 8 = , 1. 3mm_ b M d , q H , T , d z O 1 b b k 4l H b 6 , e ? S = b ? _ h 1 , h K v v l b ! 9 1 p K v 2500N,K v 1. 3mmb N _ , n m 4b 1 ( % ) , z s V s V , H b , Y V . P M Q 8 M b s V r K v O T H ,: c s V , ; K v b N H s V K v b Y V h k , ? C / 5 : ( 1) v l B b ( 2) 4 , H ) W b ( 3) ! L b 3) k ? C 5 , q 9 m s ,s 3 5 y ,4 % E b 432002 M 1 null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null m 5 null ! U i m m 6 null 8 F null null null m null null null null m 7null F null null null 8 q U i m null null ( 1) v l B b y , q F ( , H h b t , q 3 , / v l B b s , B v , 1 ! = a,N Y F , q b N B 5 V b ( 2) 4 , H ) W b L Z _ _ H , _ M , h , L T ? | w K - , O _ M H , v 9 v 7 M , 7 ? 3 K T _ M b s , 3 C y Q 8 W E V v b B E 1 - 7 ! 9 O b I n 5 T F 5 , x , R W # 9 ? P 1 p b | h O , 1 , r ! 9 / 1 p b ( 3) ! L b h , 9 k , ? C ! 4 , M , 5 F H , = B ! ( ! 9 1 p 0. 5mm, 9 v l H X N ! 9 / 1 p )b B 1 p , L = b Z E / : a) | $ F , q ( q ) C C b b) $ F , q h W $ ( )_ , H s V V 1 K H i T : c (n m 5)b Z E 6 i T : c b H 9 K H g 8 , g , P g 8 B H 1b c) g 8 , T M ,S H , = 0. 5mm P , 8 8 7 3 b 5 null k M T 5 k 8 , $ F , q k M , F r 1 p b h F a , 5 B M d k , | B 8 d Aa BaC 0 (n m 6) , W 0. 2mm, H 8 9 j S = b F , 8 g L null 0. 02mm j , n V 1: V 1null k M d d g L j L : mm d | 1 d 3 d 5 d a b c a b c a b c q 1 7. 96 7. 95 7. 95 7. 95 7. 94 7. 94 7. 93 7. 95 7. 94 q 2 7. 95 7. 94 7. 94 7. 95 7. 96 7. 93 7. 94 7. 93 7. 95 q 3 7. 97 7. 96 7. 97 7. 97 7. 96 7. 96 7. 94 7. 94 7. 93 null null V , P 8 r 0. 2mm H , F d g ? null 0. 02mm 1 p (n m 7)b 6 null 1) Y V h 7 ? ! 9 , k , L C d g j null 0. 02mm F b 2) L l N Q 7 ? ! 9 h , V T q , F 5 ! 9 b 3) | / 1 L , V 8 7 ? n 10 b l : 2001- 06- 25 T e : ( 1963- ) , 3 , 6 % , ! ! / = b (I null null ) 44null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null F 5 1 F / 文 獻(xiàn) 資 料專 業(yè) 機(jī)械設(shè)計(jì)制造及其自動(dòng)化 學(xué) 生 姓 名 龔仁華 班 級(jí) B機(jī)制077 學(xué) 號(hào) 0710101713 指 導(dǎo) 教 師 袁 健 文 獻(xiàn) 資 料1 唐善洲. 發(fā)動(dòng)機(jī)缸孔止口加工精鏜頭設(shè)計(jì)制造J. 大連機(jī)床集團(tuán)發(fā)動(dòng)機(jī)分廠, 組合機(jī)床與自動(dòng)化加工技術(shù),2002,(1):42-442 劉蕊祖.專用組合銑床側(cè)銑頭改造J.寧夏機(jī)械,2007,(4):90-933 張樹(shù)禮, 楊曙光, 田宜全. 精銑缸體頂面、精鏜缸孔及止口數(shù)控自動(dòng)線的研制J. 組合機(jī)床與自動(dòng)化加工技術(shù), 2007,(5):79-814 李春梅,崔鳳奎. 組合機(jī)床模塊化設(shè)計(jì)CAD系統(tǒng)J. 河南科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2004,(5):9-125 邱躍勇. 專用銑削組合機(jī)床的設(shè)計(jì)J. 雞西大學(xué)學(xué)報(bào), 2006,(4):59-726 于建波,王丹. 雙端面銑組合機(jī)床改造J. 哈爾濱軸承, 2009,(4):52-557 張俊沖. 銑床夾具設(shè)計(jì)J. 機(jī)械研究與應(yīng)用, 2010,(3):149-1508 牛文志. 機(jī)床夾具設(shè)計(jì)的幾點(diǎn)注意事項(xiàng)J. 金屬加工(冷加工), 2010,(14):40-419 晏立強(qiáng). 數(shù)控銑床零件外形銑削夾具設(shè)計(jì)J. 甘肅高師學(xué)報(bào), 2009,(5):21-22 10 李偉.組合銑床應(yīng)用及其夾具改造D.寧夏機(jī)械,2004,(3):51-55 c I | : 1001- 2265(2007)05- 0079- 03 l : 2007- 01- 19; : 2007- 02- 24 T e :f (1959null ), 3 , a ,v 5 v / = , 1 V Y 5 # 1 L 7 ? ! 9 , (E- mail) rwpzsl sina. comb 精銑缸體頂面a精鏜缸孔及止口數(shù)控自動(dòng)線的研制 張樹(shù)禮,楊曙光,田宜全 (大連機(jī)床集團(tuán)有限責(zé)任公司技術(shù)中心,遼寧大連null 116022) K 1 :文章闡述了用數(shù)控自動(dòng)線精銑缸體頂面a精鏜缸孔及止口的設(shè)計(jì)依據(jù)和工藝方案,并對(duì)自動(dòng)線的 布局及采用的浮動(dòng)式精密鏜削頭a滑臺(tái)式精密銑削頭a數(shù)控三導(dǎo)軌機(jī)械滑臺(tái)a自動(dòng)補(bǔ)償鏜桿a數(shù)控系統(tǒng)等 關(guān)鍵部件的結(jié)構(gòu)a原理及功能做了詳細(xì)的介紹b該自動(dòng)線的研制,解決了單機(jī)加工效率低a國(guó)內(nèi)用戶只 能依賴進(jìn)口設(shè)備的關(guān)鍵技術(shù)問(wèn)題b 1 o M :數(shù)控自動(dòng)線;浮動(dòng)式精密鏜削頭;滑臺(tái)式精密銑削頭 m s | :TG659null null null D S M :A F inishM illing H ead Face of CylinderaF inish Boring Cylinder H ole and the D esign of D igital Control Automatic Line ZHANG Shunulll,i YANG Shunullguang, TIANYinullquan (TechnicalCenter, DalianMachineToolGroup, DalianLiaoning116021, China) Abstract: The paper expounds the design and technology of finishing milling the head face, finishing bornull ing the hole and rabbet of cylinder body. Elaborately introduces the principles, structures and functions of FPB, STPM, NCMSTG, ACB, MCM and the Lay Out of the A utomatic Line. The development of this autonull matic line solves the problems of low efficiency in singlemachine tool and the dependence on foreign prodnull ucts. K ey w ords: NCAL (Numerical Contro l A utomatic Line); FPB (Floating Pecise Boring); STPM (Sliding Type PreciseM illing) 0null F 5 # 1 L N B 8 8 1 r 1 ! ,$ W a a = 8 a F b ? 8 ? 1 o , q ,7 8 F 1 o d F , d g , g ? ? v Y ,B 0. 02 0. 03 W b - S = ? 3 ,v V S g 5 B , 5 S = 9 3 F d 5 , F F ,7 O , 1 L ,v F b 5 1 L 5 F 8 d a g # 7 7 ? e 1 L b 1 p ,7 O v v 4 3 r q , F B , 1 s Q (M T T ) F , 7 1 L B Q , 4 B ,+ Y L E e M T d F / , b 1null 1 L Z (1)$ F , q ? 8 w Q 8 9 8 , m 1 U b :HT250 :HB170- 241 (2) : t= 4. 2min 8 : 1 p 0. 05,Y 1. 6, j 463. 8! 0. 024 6 d 1 : d null129. 96+ 0. 0250 0. 02 d w d null0. 04 g : d null136+ 0. 080 null 4. 7+ 0. 0260 (+ 0. 026/0) 79 2007 M 5 ! g d : 0. 02 6 d : ! 0. 05 M d ( , 4 M V 4 ): d : n=127rpmnull null v= 125m/min d : n=360rpmnull v= 154m/minnull null315 2null 1 L 8 , d e 1 L 4 / O # F b m 2 U b B 5 , 1 8 , = a T 5 , 1 d g , 5 F 2 d , T 5 B E e , h , h _ / M H F # g ,R H bN H , _ M ,w _ M ,V 7 d F b 80 ! F 5 1 F / 3null 1 L 1 q 3. 1null d h d h Y . d Y d h , F 8 d 7 7 ? h b g , - null150, h , - 180# Z _ b | H , - 8 V , . 1 ? 8 # d F Z T ) J. F 5 # 1 F / , 1999(9): 37 - 38. 3 . ? d g F h ! 9 / J. F 5 # 1 F / , 2002(1): 42- 44. (I null ) 81 2007 M 5 !
收藏