歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類(lèi) > DOC文檔下載  

2018年中考數(shù)學(xué)專(zhuān)題復(fù)習(xí)卷 幾何圖形的動(dòng)態(tài)問(wèn)題精編(含解析)

  • 資源ID:81601557       資源大?。?span id="kuowwes" class="font-tahoma">846.50KB        全文頁(yè)數(shù):31頁(yè)
  • 資源格式: DOC        下載積分:32積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開(kāi)放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要32積分
郵箱/手機(jī):
溫馨提示:
用戶(hù)名和密碼都是您填寫(xiě)的郵箱或者手機(jī)號(hào),方便查詢(xún)和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

2018年中考數(shù)學(xué)專(zhuān)題復(fù)習(xí)卷 幾何圖形的動(dòng)態(tài)問(wèn)題精編(含解析)

幾何圖形的動(dòng)態(tài)問(wèn)題精編1.如圖,平行四邊形ABCD中,AB= cm,BC=2cm,ABC=45°,點(diǎn)P從點(diǎn)B出發(fā),以1cm/s的速度沿折線BCCDDA運(yùn)動(dòng),到達(dá)點(diǎn)A為止,設(shè)運(yùn)動(dòng)時(shí)間為t(s),ABP的面積為S(cm2),則S與t的大致圖象是(   )A.                  B.                  C.                  D. 【答案】A 【解析】 :分三種情況討論:當(dāng)0t2時(shí),過(guò)A作AEBC于EB=45°,ABE是等腰直角三角形AB= ,AE=1,S= BP×AE= ×t×1= t;當(dāng)2t 時(shí),S=   = ×2×1=1;當(dāng) t 時(shí),S= AP×AE= ×( -t)×1= ( -t)故答案為:A【分析】根據(jù)題意分三種情況討論:當(dāng)0t2時(shí),過(guò)A作AEBC于E;當(dāng)2t 2 +時(shí);當(dāng) 2 + t 4 +時(shí),分別求出S與t的函數(shù)解析式,再根據(jù)各選項(xiàng)作出判斷,即可得出答案。2.如圖,邊長(zhǎng)為a的菱形ABCD中,DAB=60°,E是異于A、D兩點(diǎn)的動(dòng)點(diǎn),F是CD上的動(dòng)點(diǎn),滿(mǎn)足AE+CF=a,BEF的周長(zhǎng)最小值是(    )A.                                      B.                                      C.                                      D. 【答案】B 【解析】 :連接BD四邊形ABCD是菱形,AB=AD,DAB=60°,ABD是等邊三角形,AB=DB,BDF=60°A=BDF又AE+CF=a,AE=DF,在ABE和DBF中,ABEDBF(SAS),BE=BF,ABE=DBF,EBF=ABD=60°,BEF是等邊三角形E是異于A、D兩點(diǎn)的動(dòng)點(diǎn),F是CD上的動(dòng)點(diǎn),要使BEF的周長(zhǎng)最小,就是要使它的邊長(zhǎng)最短當(dāng)BEAD時(shí),BE最短在RtABE中,BE=BEF的周長(zhǎng)為【分析】根據(jù)等邊三角形的性質(zhì)及菱形的性質(zhì),證明A=BDF,AE=DF,AB=AD,就可證明ABEDBF,根據(jù)全等三角形的性質(zhì),可證得BE=BF,ABE=DBF,再證明BEF是等邊三角形,然后根據(jù)垂線段最短,可得出當(dāng)BEAD時(shí),BE最短,利用勾股定理求出BE的長(zhǎng),即可求出BEF的周長(zhǎng)。3.如圖,菱形 的邊長(zhǎng)是4厘米,  ,動(dòng)點(diǎn) 以1厘米/秒的速度自 點(diǎn)出發(fā)沿 方向運(yùn)動(dòng)至 點(diǎn)停止,動(dòng)點(diǎn) 以2厘米/秒的速度自 點(diǎn)出發(fā)沿折線 運(yùn)動(dòng)至 點(diǎn)停止若點(diǎn) 同時(shí)出發(fā)運(yùn)動(dòng)了 秒,記 的面積為 ,下面圖象中能表示 與 之間的函數(shù)關(guān)系的是(    )A.                            B. C.                                D. 【答案】D 【解析】 當(dāng)0t2時(shí),S=2t× ×(4-t)=- t2+4 t;當(dāng)2t4時(shí),S=4× ×(4-t)=-2 t+8 ;只有選項(xiàng)D的圖形符合故答案為:D【分析】分別求出當(dāng)0t2時(shí)和當(dāng)2t4時(shí),s與t的函數(shù)解析式,再根據(jù)各選項(xiàng)的圖像逐一判斷即可。4.如圖,矩形ABCD,R是CD的中點(diǎn),點(diǎn)M在BC邊上運(yùn)動(dòng),E,F(xiàn)分別為AM,MR的中點(diǎn),則EF的長(zhǎng)隨M點(diǎn)的運(yùn)動(dòng)(      )A. 變短                                  B. 變長(zhǎng)                                  C. 不變                                  D. 無(wú)法確定【答案】C 【解析】 :E,F(xiàn)分別為AM,MR的中點(diǎn),EF是ANR的中位線EF= ARR是CD的中點(diǎn),點(diǎn)M在BC邊上運(yùn)動(dòng)AR的長(zhǎng)度一定EF的長(zhǎng)度不變。故答案為:C【分析】根據(jù)已知E,F(xiàn)分別為AM,MR的中點(diǎn),,可證得EF是ANR的中位線,根據(jù)中位線定理,可得出EF= AR,根據(jù)已知可得出AR是定值,因此可得出EF也是定值,可得出結(jié)果。5.如圖甲,A,B是半徑為1的O上兩點(diǎn),且OAOB點(diǎn)P從A出發(fā),在O上以每秒一個(gè)單位的速度勻速運(yùn)動(dòng),回到點(diǎn)A運(yùn)動(dòng)結(jié)束設(shè)運(yùn)動(dòng)時(shí)間為x,弦BP的長(zhǎng)度為y,那么如圖乙圖象中可能表示y與x的函數(shù)關(guān)系的是(   )A.                                      B.                                      C. 或                                     D. 或【答案】C 【解析】 當(dāng)點(diǎn)P順時(shí)針旋轉(zhuǎn)時(shí),圖象是,當(dāng)點(diǎn)P逆時(shí)針旋轉(zhuǎn)時(shí),圖象是,故答案為.故答案為:C【分析】由題意知PB的最短距離為0,最長(zhǎng)距離是圓的直徑;而點(diǎn)P從A點(diǎn)沿順時(shí)針旋轉(zhuǎn)和逆時(shí)針旋轉(zhuǎn)后與點(diǎn)B的距離有區(qū)別,當(dāng)點(diǎn)P從A點(diǎn)沿順時(shí)針旋轉(zhuǎn)時(shí),弦BP的長(zhǎng)度y的變化是:從AB的長(zhǎng)度增大到直徑的長(zhǎng),然后漸次較小至點(diǎn)B為0,再?gòu)狞c(diǎn)B運(yùn)動(dòng)到點(diǎn)A,則弦BP的長(zhǎng)度y由0增大到AB的長(zhǎng);當(dāng)點(diǎn)P從A點(diǎn)沿逆時(shí)針旋轉(zhuǎn)時(shí),弦BP的長(zhǎng)度y的變化是:從AB的長(zhǎng)度減小到0,再由0增大到直徑的長(zhǎng),最后由直徑的長(zhǎng)減小到AB的長(zhǎng)。6.如圖,一塊等邊三角形的木板,邊長(zhǎng)為1,現(xiàn)將木板沿水平線翻滾,那么B點(diǎn)從開(kāi)始至結(jié)束所走過(guò)的路徑長(zhǎng)度為_(kāi)【答案】【解析】 :從圖中發(fā)現(xiàn):B點(diǎn)從開(kāi)始至結(jié)束所走過(guò)的路徑長(zhǎng)度為兩段弧長(zhǎng)即第一段= ,第二段= 故B點(diǎn)從開(kāi)始至結(jié)束所走過(guò)的路徑長(zhǎng)度= + = 故答案為:【分析】B點(diǎn)的運(yùn)動(dòng)路徑是2個(gè)圓心角是120度的扇形的弧長(zhǎng),根據(jù)弧長(zhǎng)公式求解。7.如圖,長(zhǎng)方形ABCD中,AB=4cm,BC=3cm,點(diǎn)E是CD的中點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒1cm的速度沿ABCE 運(yùn)動(dòng),最終到達(dá)點(diǎn)E若點(diǎn)P運(yùn)動(dòng)的時(shí)間為x秒,那么當(dāng)x= _時(shí),APE的面積等于5 【答案】或5 【解析】 如圖1,當(dāng)P在AB上時(shí),APE的面積等于5, x3=5,x= ;當(dāng)P在BC上時(shí),APE的面積等于5, ,3×4  (3+4x)×2 ×2×3 ×4×(x4)=5,x=5;當(dāng)P在CE上時(shí),  (4+3+2x)×3=5,x= <3+4+2,此時(shí)不符合;故答案為: 或5.【分析】先對(duì)點(diǎn)P所在不同線段的區(qū)間進(jìn)行分類(lèi)討論,再結(jié)合實(shí)際情況與所得結(jié)果進(jìn)行對(duì)比從而判斷結(jié)果的合理性.8.如圖,在矩形 中, 點(diǎn) 同時(shí)從點(diǎn) 出發(fā),分別在 , 上運(yùn)動(dòng),若點(diǎn) 的運(yùn)動(dòng)速度是每秒2個(gè)單位長(zhǎng)度,且是點(diǎn) 運(yùn)動(dòng)速度的2倍,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),停止一切運(yùn)動(dòng)以 為對(duì)稱(chēng)軸作 的對(duì)稱(chēng)圖形 點(diǎn) 恰好在 上的時(shí)間為_(kāi)秒在整個(gè)運(yùn)動(dòng)過(guò)程中, 與矩形 重疊部分面積的最大值為_(kāi)【答案】;【解析】 :(1)如圖,當(dāng)B與AD交于點(diǎn)E,作FMAD于F,DFM=90°四邊形ABCD是矩形,CD=ABAD=BCD=C=90°四邊形DCMF是矩形,CD=MFMNB與MNE關(guān)于MN對(duì)稱(chēng),MNBMNE,ME=MB,NE=BNBN=t,BM=2t,EN=t,ME=2tAB=6,BC=8,CD=MF=6,CB=DA=8AN=6-t在RtMEF和RtAEN中,由勾股定理,得(1)EF=AE=2t解得  :t=(2)如圖,MNE與MNB關(guān)于MN對(duì)稱(chēng),MEN=MBN=90°MEN+MBN+EMB+ENB=360°,EMB+ENB=180°ENA+ENB=180°,ENA=EMBtanENA=tanEMB=四邊形ABCD是矩形,ADBC,EFG=EMBBN=t,BM=2t,EN=t,ME=2tAB=6,BC=8,CD=MF=6,CB=DA=8AN=6 GA=(6-t)  GN=(6-t)EG=EN-GN=t-(6-t)=EF=()×=2t-當(dāng)時(shí),S=t2-(2t-)()=-(t-6)2+t=4時(shí),s最大=.當(dāng)0t時(shí),S=t2t=時(shí),S最大=.最大值為【分析】(1)如圖,當(dāng)B與AD交于點(diǎn)E,作FMAD于F,根據(jù)矩形的性質(zhì)得出CD=ABAD=BCD=C=90°進(jìn)而判斷出四邊形DCMF是矩形,根據(jù)矩形的對(duì)邊相等得出CD=MF根據(jù)翻折的性質(zhì)得出MNBMNE,根據(jù)全等三角形對(duì)應(yīng)邊相等得出ME=MB,NE=BN然后表示出EN=t,ME=2tCD=MF=6,CB=DA=8AN=6-t,在RtMEF和RtAEN中,由勾股定理EF,AE的長(zhǎng),根據(jù)線段的和差得出方程,求解得出t的 值;(2)根據(jù)翻折的性質(zhì)得出MEN=MBN=90°根據(jù)四邊形的內(nèi)角和,鄰補(bǔ)角定義及等量代換得出ENA=EMB根據(jù)等角的同名三角函數(shù)值相等得出tanENA=tanEMB=, 根據(jù)矩形的性質(zhì)得出EFG=EMBEN=t,ME=2tCD=MF=6,CB=DA=8AN=6-t,進(jìn)而表示出GA,GN,EG,EF,的長(zhǎng),當(dāng) < t 4 時(shí),與當(dāng)0t 時(shí),分別求出S的值,再比大小即可得出答案。9.如圖,在ABC中,BCAC5,AB8,CD為AB邊的高,點(diǎn)A在x軸上,點(diǎn)B在y軸上,點(diǎn)C在第一象限,若A從原點(diǎn)出發(fā),沿x軸向右以每秒1個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),則點(diǎn)B隨之沿y軸下滑,并帶動(dòng)ABC在平面內(nèi)滑動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)B到達(dá)原點(diǎn)時(shí)停止運(yùn)動(dòng)(1)連接OC,線段OC的長(zhǎng)隨t的變化而變化,當(dāng)OC最大時(shí),t_; (2)當(dāng)ABC的邊與坐標(biāo)軸平行時(shí),t_。 【答案】(1)(2)t 【解析】 (1)如圖:當(dāng) 三點(diǎn)共線時(shí), 取得最大值,    ( 2 )分兩種情況進(jìn)行討論:設(shè)  時(shí),CAOA,CAy軸,CAD=ABO.又  RtCADRtABO,  即  解得  設(shè) 時(shí),  CBx軸,RtBCDRtABO,  即   綜上可知,當(dāng)以點(diǎn)C為圓心,CA為半徑的圓與坐標(biāo)軸相切時(shí),t的值為 或  故答案為:     或  【分析】(1)當(dāng) O , C , D 三點(diǎn)共線時(shí),OC取得最大值,此時(shí)OC是線段AB的中垂線, 根據(jù)中垂線的性質(zhì),及勾股定理得出OA =OB = 4 ,  然后根據(jù)時(shí)間等于路程除以速度即可得出答案;( 2 )分兩種情況進(jìn)行討論:設(shè)OA = t 1  時(shí),CAOA,故CAy軸,然后判斷出RtCADRtABO,根據(jù)相似三角形對(duì)應(yīng)邊成比例得出ABCA = AOCD ,從而得出答案;設(shè) A O = t 2 時(shí),BC OB ,故CBx軸,然后判斷出RtBCDRtABO,根據(jù)相似三角形對(duì)應(yīng)邊成比例得出BCAB=BD AO, 從而得出答案.10.如圖,在平面直角坐標(biāo)系中,A(4,0)、B(0,-3),以點(diǎn)B為圓心、2 為半徑的B上 有一動(dòng)點(diǎn)P.連接AP,若點(diǎn)C為AP的中點(diǎn),連接OC,則OC的最小值為_(kāi)【答案】【解析】 :作A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)A,則A(4,0),OC是AAP的中位線,當(dāng)AP取最小值時(shí),OC取最小值連接AB交B于點(diǎn)P,此時(shí)AP最小在RtOAB中,OA=4,OB=3,AB=5,AP=5-2=3,OC= ,OC的最小值 故答案為: 【分析】作A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)A,可得出點(diǎn)A的坐標(biāo),可證得OC是AAP的中位線,因此當(dāng)AP取最小值時(shí),OC取最小值連接AB交B于點(diǎn)P,此時(shí)AP最小,再利用勾股定理求出AB,再根據(jù)圓的半徑求出AP的長(zhǎng),利用三角形的中位線定理,即可求出OC的最小值 。11.已知矩形 中, 是 邊上的一個(gè)動(dòng)點(diǎn),點(diǎn) , , 分別是 , , 的中點(diǎn).(1)求證: ; (2)設(shè) ,當(dāng)四邊形 是正方形時(shí),求矩形 的面積. 【答案】(1)解:點(diǎn)F,H分別是BC,CE的中點(diǎn),F(xiàn)HBE, 又點(diǎn)G是BE的中點(diǎn), 又 ,BGF FHC(2)解:當(dāng)四邊形EGFH是正方形時(shí),可知EFGH且 在BEC中,點(diǎn)G,H分別是BE,EC的中點(diǎn),  且GHBC, 又ADBC, ABBC, , 【解析】【分析】(1)根據(jù)點(diǎn)F,H分別是BC,CE的中點(diǎn),可證得FH是BCE的中位線,就可證得FHBE, FH=BE 再根據(jù)點(diǎn)G是BE的中點(diǎn),得出FH=BG,就可證得結(jié)論。(2)當(dāng)四邊形EGFH是正方形時(shí),可知EFGH且 E F = G H ,根據(jù)已知在BEC中,點(diǎn)G,H分別是BE,EC的中點(diǎn),可證得GH是BCE的中位線,可求出GH的長(zhǎng)及GHBC,再根據(jù)ADBC, ABBC,可證得AB=GH,然后利用矩形的面積公式,即可求解。12.如圖,在ABC中,C90°,AC4cm,BC5cm,點(diǎn)D在BC上,且CD3cm.動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)P以1cm/s的速度沿AC向終點(diǎn)C移動(dòng);點(diǎn)Q以 cm/s的速度沿CB向終點(diǎn)B移動(dòng)過(guò)點(diǎn)P作PECB交AD于點(diǎn)E,設(shè)動(dòng)點(diǎn)的運(yùn)動(dòng)時(shí)間為x秒(1)用含x的代數(shù)式表示EP; (2)當(dāng)Q在線段CD上運(yùn)動(dòng)幾秒時(shí),四邊形PEDQ是平行四邊形; (3)當(dāng)Q在線段BD(不包括點(diǎn)B、點(diǎn)D)上運(yùn)動(dòng)時(shí),求當(dāng)x為何值時(shí),四邊形EPDQ面積等于 . 【答案】(1)解:如圖所示,PECB,AEPADC. 又EAPDAC,AEPADC, ,  ,EP x.(2)解:由四邊形PEDQ1是平行四邊形,可得EPDQ1. 即 x3 x,所以x1.5.0x2.4當(dāng)Q在線段CD上運(yùn)動(dòng)1.5秒時(shí),四邊形PEDQ是平行四邊形(3)解: S四邊形EPDQ2  ( x x3)·(4x)x2 x6,四邊形EPDQ面積等于 ,x2 x6 ,整理得:2x211x150.解得:x3或x2.5,當(dāng)x為3或2.5時(shí),四邊形EPDQ面積等于 . 【解析】【分析】(1)抓住已知條件PECB,證明AEPADC,再根據(jù)相似三角形的性質(zhì)得出對(duì)應(yīng)邊成比例,可得出EP的長(zhǎng)。(2)根據(jù)已知可知PECB,要證四邊形PEDQ是平行四邊形,則EPDQ1 , 建立關(guān)于x的方程,求出x的值,再寫(xiě)出x的取值范圍即可。(3)根據(jù)PECB,可證得四邊形EPDQ是梯形,根據(jù)梯形的面積=, 建立關(guān)于x的方程,再解方程求解即可。13.如圖1,圖2中,正方形ABCD的邊長(zhǎng)為6,點(diǎn)P從點(diǎn)B出發(fā)沿邊BCCD以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)D勻速運(yùn)動(dòng),以BP為邊作等邊三角形BPQ,使點(diǎn)Q在正方形ABCD內(nèi)或邊上,當(dāng)點(diǎn)Q恰好運(yùn)動(dòng)到AD邊上時(shí),點(diǎn)P停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒(t0)。     (1)當(dāng)t2時(shí),點(diǎn)Q到BC的距離_; (2)當(dāng)點(diǎn)P在BC邊上運(yùn)動(dòng)時(shí),求CQ的最小值及此時(shí)t的值; (3)若點(diǎn)Q在AD邊上時(shí),如圖2,求出t的值; (4)直接寫(xiě)出點(diǎn)Q運(yùn)動(dòng)路線的長(zhǎng)。 【答案】(1)解: (2)解:點(diǎn)P在BC邊上運(yùn)動(dòng)時(shí),有 ,根據(jù)垂線段最短,當(dāng) 時(shí),CQ最小,如圖,在直角三角形BCQ中, ,        (3)解:若點(diǎn)Q在AD邊上,則    RtBAQRtBCP(HL),     ,且由勾股定理可得, 解得: (不合題意,舍去), (4)解:點(diǎn)Q運(yùn)動(dòng)路線的長(zhǎng)等于點(diǎn) 運(yùn)動(dòng)的路線長(zhǎng):  【解析】【解答】 如圖:過(guò)點(diǎn) 作  當(dāng) 時(shí),  是等邊三角形,  故答案為: 【分析】(1)過(guò)點(diǎn) Q 作QEBC,  根據(jù)路程等于速度乘以時(shí)間,由 t = 2 , 得出BP的長(zhǎng),根據(jù)等邊三角形的性質(zhì)得出BQ = 4 , QBE = 60 ,在RtBPQ中,根據(jù)正弦函數(shù)的定義即可得出QE的長(zhǎng);(2)點(diǎn)P在BC邊上運(yùn)動(dòng)時(shí),有 QBC = 60 ° ,根據(jù)垂線段最短,當(dāng) CQBQ 時(shí),CQ最小,如圖,在直角三角形BCQ中, QBC= 60 ° ,從而得出BQ的長(zhǎng)度,根據(jù)等邊三角形的性質(zhì)得出BP=BQ=3,根據(jù)時(shí)間等于路程除以速度,從而得出t的值,再根據(jù)正切函數(shù)的定義,即可得出CQ的長(zhǎng);(3)若點(diǎn)Q在AD邊上,則 C P = 2 t 6 ,  首先利用HL判斷出RtBAQRtBCP,根據(jù)全等三角形對(duì)應(yīng)邊相等得出A Q = C P = 2 t 6 ,  進(jìn)而得出DQ =DP= 12 2 t , 由 BP = PQ ,且由勾股定理可得,DQ 2 + DP 2 =QP 2 , BC 2 +CP2 =BP 2,得出關(guān)于t的方程,求解并檢驗(yàn)即可得出t的值;(4)根據(jù)題意點(diǎn)Q運(yùn)動(dòng)路線的長(zhǎng)等于點(diǎn) P 運(yùn)動(dòng)的路線長(zhǎng),由路程等于速度乘以時(shí)間即可得出答案。14.已知:如圖,在平行四邊形ABCD中,AB=12,BC=6,ADBD以AD為斜邊在平行四邊形AB CD的內(nèi)部作RtAED,EAD=30°,AED=90°(1)求AED的周長(zhǎng); (2)若 AED以每秒2個(gè)單位長(zhǎng)度的速度沿DC向右平行移動(dòng),得到AE0D0 , 當(dāng)A0D0與BC重合時(shí)停止移動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,A0E0D0與BDC重疊的面積為S,請(qǐng)直接寫(xiě)出 S與t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍; (3)如圖,在(2)中,當(dāng)AED停止移動(dòng)后得到BEC,將BEC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)(0°180°),在旋轉(zhuǎn)過(guò)程中,B的對(duì)應(yīng)點(diǎn)為B1 , E的對(duì)應(yīng)點(diǎn)為E1 , 設(shè)直線B1E1與直線BE交于點(diǎn)P、與直線CB交于點(diǎn)Q是否存在這樣的,使BPQ為等腰三角形?若存在,求出的度數(shù);若不存在,請(qǐng)說(shuō)明理由 【答案】(1)解:(1)四邊形ABCD是平行四邊形,AD=BC=6在RtADE中,AD=6,EAD=30°,AE=ADcos30°=6×=3,DE=ADsin30°=6×=3,AED的周長(zhǎng)為:6+3+3=9+3。(2)解:在AED向右平移的過(guò)程中:(I)當(dāng)0t1.5時(shí),如答圖1所示,此時(shí)重疊部分為D0NKDD0=2t,ND0=DD0sin30°=t,NK=ND0÷tan30°=t,S=SD0NK=1ND0NK=tt=t2;(II)當(dāng)1.5<t4.5時(shí),如答圖2所示,此時(shí)重疊部分為四邊形D0E0KNAA0=2t,A0B=AB-AA0=12-2t,A0N=A0B=6-t,NK=A0Ntan30°=(6-t)S=S四邊形D0E0KN=SA0D0E0-SA0NK=×3×-×(6-t)×(6-t)=-t2+2t-;(III)當(dāng)4.5<t6時(shí),如答圖3所示,此時(shí)重疊部分為五邊形D0IJKNAA0=2t,A0B=AB-AA0=12-2t=D0C,A0N=A0B=6-t,D0N=6-(6-t)=t,BN=A0Bcos30°=(6-t);易知CI=BJ=A0B=D0C=12-2t,BI=BC-CI=2t-6,S=S梯形BND0I-SBKJ=t+(2t-6)(6-t)-(12-2t)=故答案為:S=t2;(0t1.5)S=-t2+2t-(1.5<t4.5);S=(4.5<t6)(3)證明:存在,使BPQ為等腰三角形理由如下:經(jīng)探究,得BPQB1QC,故當(dāng)BPQ為等腰三角形時(shí),B1QC也為等腰三角形(I)當(dāng)QB=QP時(shí)(如答圖4),則QB1=QC,B1CQ=B1=30°,即BCB1=30°,=30°;(II)當(dāng)BQ=BP時(shí),則B1Q=B1C,若點(diǎn)Q在線段B1E1的延長(zhǎng)線上時(shí)(如答圖5),B1=30°,B1CQ=B1QC=75°,即BCB1=75°,=75°;若點(diǎn)Q在線段E1B1的延長(zhǎng)線上時(shí)(如答圖6),CB1E1=30°,B1CQ=B1QC=15°,即BCB1=180°-B1CQ=180°-15°=165°,=165°當(dāng)PQ=PB時(shí)(如答圖7),則CQ=CB1 , CB=CB1 , CQ=CB1=CB,又點(diǎn)Q在直線CB上,0°<<180°,點(diǎn)Q與點(diǎn)B重合,此時(shí)B、P、Q三點(diǎn)不能構(gòu)成三角形綜上所述,存在=30°,75°或165°,使BPQ為等腰三角形 【解析】【分析】(1)根據(jù)平行四邊形的性質(zhì)求出AD的長(zhǎng),再利用解直角三角形求出AE、DE的長(zhǎng),然后求出AED的周長(zhǎng)即可。(2)在AED向右平移的過(guò)程中,分三種情況討論:(I)當(dāng)0t1.5時(shí),如答圖1所示,此時(shí)重疊部分為D0NK;(II)當(dāng)1.5<t4.5時(shí),如答圖2所示,此時(shí)重疊部分為四邊形D0E0KN;(III)當(dāng)4.5<t6時(shí),如答圖3所示,此時(shí)重疊部分為五邊形D0IJKN;分別根據(jù)題意求出s與t的函數(shù)解析式即可。(3)根據(jù)已知易證BPQB1QC,故當(dāng)BPQ為等腰三角形時(shí),B1QC也為等腰三角形,分三種情況討論:(I)當(dāng)QB=QP時(shí)(如答圖4);(II)當(dāng)BQ=BP時(shí),則B1Q=B1C;當(dāng)PQ=PB時(shí)(如答圖7),則CQ=CB1;分別求出的度數(shù)即可。15.如圖,在直角坐標(biāo)系XOY中,菱形OABC的邊OA在x軸正半軸上,點(diǎn)B,C在第一象限,C=120°,邊長(zhǎng)OA=8,點(diǎn)M從原點(diǎn)O出發(fā)沿x軸正半軸以每秒1個(gè)單位長(zhǎng)的速度作勻速運(yùn)動(dòng),點(diǎn)N從A出發(fā)沿邊ABBCCO以每秒2個(gè)單位長(zhǎng)的速度作勻速運(yùn)動(dòng).過(guò)點(diǎn)M作直線MP垂直于x軸并交折線OCB于P,交對(duì)角線OB于Q,點(diǎn)M和點(diǎn)N同時(shí)出發(fā),分別沿各自路線運(yùn)動(dòng),點(diǎn)N運(yùn)動(dòng)到原點(diǎn)O時(shí),M和N兩點(diǎn)同時(shí)停止運(yùn)動(dòng).(1)當(dāng)t=2時(shí),求線段PQ的長(zhǎng); (2)求t為何值時(shí),點(diǎn)P與N重合; (3)設(shè)APN的面積為S,求S與t的函數(shù)關(guān)系式及t的取值范圍. 【答案】(1)解:在菱形OABC中,AOC=60°,AOQ=30°,當(dāng)t=2時(shí),OM=2,PM=2 ,QM= ,PQ= (2)解:當(dāng)t4時(shí),AN=PO=2OM=2t,t=4時(shí),P到達(dá)C點(diǎn),N到達(dá)B點(diǎn),點(diǎn)P,N在邊BC上相遇.設(shè)t秒時(shí),點(diǎn)P與N重合,則(t-4)+2(t-4)=8,t= .即t= 秒時(shí),點(diǎn)P與N重合 (3)解:當(dāng)0t4時(shí),PN=OA=8,且PNOA,PM= t,SAPN= ·8· t=4 t;當(dāng)4t 時(shí),PN=8-3(t-4)=20-3t,SAPN= ×4 ×(20-3t)=40 -6 t;當(dāng) t8時(shí),PN=3(t-4)-8=3t-20,SAPN= ×4 ×(3t-20)= 6 t -4 ;8t12時(shí),ON=24-2t,N到OM距離為12 - t,  N到CP距離為4 -(12 - t)= t-8 ,CP=t-4,BP=12-t,SAPN=S菱形-SAON- SCPN- SAPB=32 - ×8×(12 - t)- (t-4)( t-8 )- (12-t)×4 = - t2+12 t-56 綜上,S與t的函數(shù)關(guān)系式為: 【解析】【分析】(1)根據(jù)菱形的性質(zhì)得出AOC=60°,AOQ=30°,當(dāng)t=2時(shí),OM=2,再直角三角形中根據(jù)含30°角的直角三角形的邊之間的關(guān)系得出PM,QM的長(zhǎng),進(jìn)而利用線段的和差得出PQ的長(zhǎng);(2)當(dāng)t4時(shí),AN=PO=2OM=2t,t=4時(shí),P到達(dá)C點(diǎn),N到達(dá)B點(diǎn),點(diǎn)P,N在邊BC上相遇.設(shè)t秒時(shí),點(diǎn)P與N重合,根據(jù)相遇問(wèn)題的等量關(guān)系,列出方程,求解得出t的值;(3)當(dāng)0t4時(shí),PN=OA=8,且PNOA,PM= 3 t,根據(jù)三角形的面積公式,及平行線間的距離是一個(gè)定值即可得出S與t的函數(shù)關(guān)系式;當(dāng)4t 時(shí),P,N都在BC上相向運(yùn)動(dòng),此時(shí)PN=8-3(t-4)=20-3t,根據(jù)三角形的面積公式,及平行線間的距離是一個(gè)定值即可得出S與t的函數(shù)關(guān)系式;當(dāng) t8時(shí),P,N都在BC上運(yùn)動(dòng),不過(guò)此時(shí)是背向而行,此時(shí)PN=3(t-4)-8=3t-20,根據(jù)三角形的面積公式,及平行線間的距離是一個(gè)定值即可得出S與t的函數(shù)關(guān)系式;8t12時(shí),N在OC上運(yùn)動(dòng),ON=24-2t,M在A點(diǎn)的右側(cè)運(yùn)動(dòng),N到OM距離為12- t, N到CP距離為4  -(12 -  t)= t-8 ,CP=t-4,BP=12-t,由SAPN=S菱形-SAON- SCPN- SAPB即可得出答案;綜上所述即可得出S與t的函數(shù)關(guān)系式。16.如圖,已知ABC的頂點(diǎn)坐標(biāo)分別為A(3,0),B(0,4),C(-3,0)。動(dòng)點(diǎn)M,N同時(shí)從A點(diǎn)出發(fā),M沿AC,N沿折線ABC,均以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng),當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)C時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止移動(dòng),移動(dòng)時(shí)間記為t秒。連接MN。(1)求直線BC的解析式; (2)移動(dòng)過(guò)程中,將AMN沿直線MN翻折,點(diǎn)A恰好落在BC邊上點(diǎn)D處,求此時(shí)t值及點(diǎn)D的坐標(biāo); (3)當(dāng)點(diǎn)M,N移動(dòng)時(shí),記ABC在直線MN右側(cè)部分的面積為S,求S關(guān)于時(shí)間t的函數(shù)關(guān)系式。 【答案】(1)解:設(shè)直線BC解析式為:y=kx+b,B(0,4),C(-3,0), ,解得: 直線BC解析式為:y= x+4.(2)解:依題可得:AM=AN=t,AMN沿直線MN翻折,點(diǎn)A與點(diǎn)點(diǎn)D重合,四邊形AMDN為菱形,作NFx軸,連接AD交MN于O,A(3,0),B(0,4),OA=3,OB=4,AB=5,M(3-t,0),又ANFABO, = = , = = ,AF= t,NF= t,N(3- t, t),O(3- t, t),設(shè)D(x,y), =3- t, = t,x=3- t,y= t,D(3- t, t),又D在直線BC上, ×(3- t)+4= t,t= ,D(- , ).(3)當(dāng)0<t5時(shí)(如圖2),ABC在直線MN右側(cè)部分為AMN,S= = ·AM·DF= ×t× t= t ,當(dāng)5<t6時(shí),ABC在直線MN右側(cè)部分為四邊形ABNM,如圖3AM=AN=t,AB=BC=5,BN=t-5,CN=-5-(t-5)=10-t,又CNFCBO, = , = ,NF= (10-t),S= - = ·AC·OB- ·CM·NF,= ×6×4- ×(6-t)× (10-t),=- t + t-12. 【解析】【分析】(1)設(shè)直線BC解析式為:y=kx+b,將B、C兩點(diǎn)坐標(biāo)代入即可得出二元一次方程組,解之即可得出直線BC解析式.(2)依題可得:AM=AN=t,根據(jù)翻折性質(zhì)得四邊形AMDN為菱形,作NFx軸,連接AD交MN于O,結(jié)合已知條件得M(3-t,0),又ANFABO,根據(jù)相似三角形性質(zhì)得 = = ,代入數(shù)值即可得AF= t,NF= t,從而得N(3- t, t),根據(jù)中點(diǎn)坐標(biāo)公式得O(3- t, t),設(shè)D(x,y),再由中點(diǎn)坐標(biāo)公式得D(3- t, t),又由D在直線BC上,代入即可得D點(diǎn)坐標(biāo).(3)當(dāng)0<t5時(shí)(如圖2),ABC在直線MN右側(cè)部分為AMN,根據(jù)三角形面積公式即可得出S表達(dá)式.當(dāng)5<t6時(shí),ABC在直線MN右側(cè)部分為四邊形ABNM,由CNFCBO,根據(jù)相似三角形性質(zhì)得 = ,代入數(shù)值得NF= (10-t),最后由S= - = ·AC·OB- ·CM·NF,代入數(shù)值即可得表達(dá)式.17.已知RtOAB,OAB=90°,ABO=30°,斜邊OB=4,將RtOAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°,如題圖1,連接BC(1)填空:OBC=_°; (2)如圖1,連接AC,作OPAC,垂足為P,求OP的長(zhǎng)度; (3)如圖2,點(diǎn)M,N同時(shí)從點(diǎn)O出發(fā),在OCB邊上運(yùn)動(dòng),M沿OCB路徑勻速運(yùn)動(dòng),N沿OBC路徑勻速運(yùn)動(dòng),當(dāng)兩點(diǎn)相遇時(shí)運(yùn)動(dòng)停止,已知點(diǎn)M的運(yùn)動(dòng)速度為1.5單位/秒,點(diǎn)N的運(yùn)動(dòng)速度為1單位/秒,設(shè)運(yùn)動(dòng)時(shí)間為x秒,OMN的面積為y,求當(dāng)x為何值時(shí)y取得最大值?最大值為多少? 【答案】(1)60(2)解:如圖1中,OB=4,ABO=30°,OA= OB=2,AB= OA=2 ,SAOC= OAAB= ×2×2 =2 ,BOC是等邊三角形,OBC=60°,ABC=ABO+OBC=90°,AC= =2 ,OP= = = (3)解:當(dāng)0x 時(shí),M在OC上運(yùn)動(dòng),N在OB上運(yùn)動(dòng),此時(shí)過(guò)點(diǎn)N作NEOC且交OC于點(diǎn)E則NE=ONsin60°= x,SOMN= OMNE= ×1.5x× x,y= x2 x= 時(shí),y有最大值,最大值= 當(dāng) x4時(shí),M在BC上運(yùn)動(dòng),N在OB上運(yùn)動(dòng)作MHOB于H則BM=81.5x,MH=BMsin60°= (81.5x),y= ×ON×MH= x2+2 x當(dāng)x= 時(shí),y取最大值,y ,當(dāng)4x4.8時(shí),M、N都在BC上運(yùn)動(dòng),作OGBC于GMN=122.5x,OG=AB=2 ,y= MNOG=12 x,當(dāng)x=4時(shí),y有最大值,最大值=2 ,綜上所述,y有最大值,最大值為 【解析】【解答】解:(1)由旋轉(zhuǎn)性質(zhì)可知:OB=OC,BOC=60°,OBC是等邊三角形,OBC=60°故答案為60【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得出OB=OC,BOC=60°,根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形可判斷出OBC是等邊三角形,根據(jù)等邊三角形的性質(zhì)即可得出答案;(2)根據(jù)含30角的直角三角形的邊之間的關(guān)系得出OA,AB的長(zhǎng),由SAOC=OAAB得出AOC的面積,根據(jù)等邊三角形的性質(zhì)及角的和差得出ABC=90°,根據(jù)勾股定理得出AC的長(zhǎng),利用三角形的面積法即可得出OP的長(zhǎng);(3)當(dāng)0x 時(shí),M在OC上運(yùn)動(dòng),N在OB上運(yùn)動(dòng),此時(shí)過(guò)點(diǎn)N作NEOC且交OC于點(diǎn)E利用正弦函數(shù)的定義由NE=ONsin60°,表示出NE的長(zhǎng),根據(jù)SOMN= OMNE,得出y與x之間的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)得出答案;當(dāng)   x4時(shí),M在BC上運(yùn)動(dòng),N在OB上運(yùn)動(dòng),作MHOB于H則BM=81.5x,MH=BMsin60°= (81.5x),根據(jù)三角形的面積公式由y=   ×ON×MH得出y與x之間的函數(shù)關(guān)系,根據(jù)函數(shù)性質(zhì)得出結(jié)論;當(dāng)4x4.8時(shí),M、N都在BC上運(yùn)動(dòng),作OGBC于GMN=122.5x,OG=AB=2,根據(jù)三角形的面積公式由y= MNOG得出y與x之間的函數(shù)關(guān)系,根據(jù)函數(shù)性質(zhì)得出結(jié)論;通過(guò)比較即可得出最終答案。18.如圖1,四邊形 是矩形,點(diǎn) 的坐標(biāo)為 ,點(diǎn) 的坐標(biāo)為 .點(diǎn) 從點(diǎn) 出發(fā),沿 以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn) 運(yùn)動(dòng),同時(shí)點(diǎn) 從點(diǎn) 出發(fā),沿 以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn) 運(yùn)動(dòng),當(dāng)點(diǎn) 與點(diǎn) 重合時(shí)運(yùn)動(dòng)停止.設(shè)運(yùn)動(dòng)時(shí)間為 秒.(1)當(dāng) 時(shí),線段 的中點(diǎn)坐標(biāo)為_(kāi); (2)當(dāng) 與 相似時(shí),求 的值; (3)當(dāng) 時(shí),拋物線 經(jīng)過(guò) 、 兩點(diǎn),與 軸交于點(diǎn) ,拋物線的頂點(diǎn)為 ,如圖2所示.問(wèn)該拋物線上是否存在點(diǎn) ,使 ,若存在,求出所有滿(mǎn)足條件的 點(diǎn)坐標(biāo);若不存在,說(shuō)明理由. 【答案】(1)( ,2)(2)解:如圖1,四邊形OABC是矩形,B=PAQ=90°當(dāng)CBQ與PAQ相似時(shí),存在兩種情況:當(dāng)PAQQBC時(shí), , ,4t2-15t+9=0,(t-3)(t- )=0,t1=3(舍),t2= ,當(dāng)PAQCBQ時(shí), , ,t2-9t+9=0,t= ,0t6, 7,x= 不符合題意,舍去,綜上所述,當(dāng)CBQ與PAQ相似時(shí),t的值是 或 (3)解:當(dāng)t=1時(shí),P(1,0),Q(3,2),把P(1,0),Q(3,2)代入拋物線y=x2+bx+c中得:,解得: ,拋物線:y=x2-3x+2=(x- )2- ,頂點(diǎn)k( ,- ),Q(3,2),M(0,2),MQx軸,作拋物線對(duì)稱(chēng)軸,交MQ于E,KM=KQ,KEMQ,MKE=QKE= MKQ,如圖2,MQD= MKQ=QKE,設(shè)DQ交y軸于H,HMQ=QEK=90°,KEQQMH, , ,MH=2,H(0,4),易得HQ的解析式為:y=- x+4,則 ,x2-3x+2=- x+4,解得:x1=3(舍),x2=- ,D(- , );同理,在M的下方,y軸上存在點(diǎn)H,如圖3,使HQM= MKQ=QKE,由對(duì)稱(chēng)性得:H(0,0),易得OQ的解析式:y= x,則 ,x2-3x+2= x,解得:x1=3(舍),x2= ,D( , );綜上所述,點(diǎn)D的坐標(biāo)為:D(- , )或( , ) 【解析】【解答】解:(1)如圖1,點(diǎn)A的坐標(biāo)為(3,0),OA=3,當(dāng)t=2時(shí),OP=t=2,AQ=2t=4,P(2,0),Q(3,4),線段PQ的中點(diǎn)坐標(biāo)為:( , ),即( ,2);故答案為:( ,2);【分析】(1)根據(jù)A點(diǎn)坐標(biāo)得出OA的長(zhǎng)度,當(dāng)t=2時(shí),OP=t=2,AQ=2t=4,從而得出P,Q兩點(diǎn)的坐標(biāo),根據(jù)線段中點(diǎn)坐標(biāo)公式得出線段PQ的中點(diǎn)坐標(biāo);(2)根據(jù)矩形的性質(zhì)得出B=PAQ=90°,當(dāng)CBQ與PAQ相似時(shí),存在兩種情況:當(dāng)PAQQBC時(shí), PA AQ QBBC ,當(dāng)PAQCBQ時(shí), PAAQBCQB ,從而得出關(guān)于t的方程,求解并檢驗(yàn)得出t的值;(3)當(dāng)t=1時(shí),得出P,Q兩點(diǎn)的坐標(biāo),再將P,Q兩點(diǎn)的坐標(biāo)分別代入拋物線y=x2+bx+c中得:得出關(guān)于b,c的二元一次方程組,求解得出b,c的值,從而得出拋物線的解析式,進(jìn)一步得出拋物線的頂點(diǎn)K的坐標(biāo),根據(jù)Q,M兩點(diǎn)的坐標(biāo)特點(diǎn)得出MQx軸,作拋物線對(duì)稱(chēng)軸,交MQ于E,根據(jù)拋物線的對(duì)稱(chēng)性得出KM=KQ,KEMQ,根據(jù)等腰三角形的三線合一得出MKE=QKE= MKQ,如圖2,MQD= MKQ=QKE,設(shè)DQ交y軸于H,然后判斷出KEQQMH,根據(jù)相似三角形對(duì)應(yīng)邊成比例得出KEEQMQMH,從而得出MH的長(zhǎng)度,H點(diǎn)的坐標(biāo),用待定系數(shù)法得出直線HQ的解析式,解聯(lián)立直線HQ的解析式及拋物線的解析式組成的方程組,并檢驗(yàn)得出D點(diǎn)的坐標(biāo),同理,在M的下方,y軸上存在點(diǎn)H,如圖3,使HQM= MKQ=QKE,由對(duì)稱(chēng)性得H點(diǎn)的坐標(biāo),用待定系數(shù)法得出直線OQ的解析式,解聯(lián)立直線OQ的解析式及拋物線的解析式組成的方程組,并檢驗(yàn)得出D點(diǎn)的坐標(biāo);綜上所述得出答案。31

注意事項(xiàng)

本文(2018年中考數(shù)學(xué)專(zhuān)題復(fù)習(xí)卷 幾何圖形的動(dòng)態(tài)問(wèn)題精編(含解析))為本站會(huì)員(Sc****h)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!