《2018屆中考數(shù)學(xué) 專題復(fù)習(xí)二 代數(shù)式試題 浙教版》由會員分享,可在線閱讀,更多相關(guān)《2018屆中考數(shù)學(xué) 專題復(fù)習(xí)二 代數(shù)式試題 浙教版(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
代數(shù)式
教學(xué)準(zhǔn)備
一. 教學(xué)目標(biāo):
1. 復(fù)習(xí)整式的有關(guān)概念,整式的運(yùn)算
2. 理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,能把簡單多項(xiàng)式分解因式。
3. 掌握分式的概念、性質(zhì),掌握分式的約分、通分、混合運(yùn)算。
4. 理解平方根、立方根、算術(shù)平方根的概念,會用根號表示數(shù)的平方根、立方根和算術(shù)平方根。會求實(shí)數(shù)的平方根、算術(shù)平方根和立方根,了解二次根式、最簡二次根式、同類二次根式的概念,會辨別最簡二次根式和同類二次根式。掌握二次根式的性質(zhì),會化簡簡單的二次根式,能根據(jù)指定字母的取值范圍將二次根式化簡;掌握二次根式的運(yùn)算法則,能進(jìn)行二次根式的加減乘除四
2、則運(yùn)算,會進(jìn)行簡單的分母有理化。
二. 教學(xué)重點(diǎn)、難點(diǎn):
因式分解法在整式、分式、二次根式的化簡與混合運(yùn)算中的綜合運(yùn)用。
三.知識要點(diǎn):
知識點(diǎn)1 整式的概念
(1)整式中只含有一項(xiàng)的是單項(xiàng)式,否則是多項(xiàng)式,單獨(dú)的字母或常數(shù)是單項(xiàng)式;
(2)單項(xiàng)式的次數(shù)是所有字母的指數(shù)之和;
多項(xiàng)式的次數(shù)是多項(xiàng)式中最高次項(xiàng)的次數(shù);
(3)單項(xiàng)式的系數(shù),多項(xiàng)式中的每一項(xiàng)的系數(shù)均包括它前面的符號
(4)同類項(xiàng)概念的兩個(gè)相同與兩個(gè)無關(guān):
兩個(gè)相同:一是所含字母相同,二是相同字母的指數(shù)相同;
兩個(gè)無關(guān):一是與系數(shù)的大小無關(guān),二是與字母的順序無關(guān);
(5)整式加減的實(shí)質(zhì)是合
3、并同類項(xiàng);
(6)因式分解與整式乘法的過程恰為相反。
知識點(diǎn)2 整式的運(yùn)算 (如結(jié)構(gòu)圖)
知識點(diǎn)3 因式分解
多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積.分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止.分解因式的常用方法有:
(1)提公因式法
如多項(xiàng)式
其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式,m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式.
(2)運(yùn)用公式法,即用
寫出結(jié)果.
(3)十字相乘法
對于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式 尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項(xiàng)式尋找滿足
a1a2=a,c
4、1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則
(4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行.
分組時(shí)要用到添括號:括號前面是“+”號,括到括號里的各項(xiàng)都不變符號;括號前面是“-”號,括到括號里的各項(xiàng)都改變符號.
(5)求根公式法:如果有兩個(gè)根x1,x2,那么。
知識點(diǎn)4 分式的概念
(1)分式的定義:整式A除以整式B,可以表示成的形式。如果除式B中含有字母,那么稱為分式,其中A稱為分式的分子,B為分式的分母。
對于任意一個(gè)分式,分母都不能為零。
(2)分式的約分
(3)分式的通分
知識點(diǎn)5 分式的性質(zhì)
(1
5、)(2)已知分式,分式的值為正:a與b同號;分式的值為負(fù):a與b異號;分式的值為零:a=0且b0;分式有意義:b0。
(3)零指數(shù)
(4)負(fù)整數(shù)指數(shù)
(5)整數(shù)冪的運(yùn)算性質(zhì)
上述等式中的m、n可以是0或負(fù)整數(shù).
知識點(diǎn)6 根式的有關(guān)概念
1. 平方根:若x2=a(a>0),則x叫做a的平方根,記為。
注意:①正數(shù)的平方根有兩個(gè),它們互為相反數(shù);②0的平方根是0;③負(fù)數(shù)沒有平方根;
2. 算術(shù)平方根:一個(gè)數(shù)的正的平方根叫做算術(shù)平方根;
3. 立方根:若x3=a(a>0),則x叫做a的立方根,記為。
4. 最簡二次根式
被開方數(shù)所含因數(shù)是整數(shù),因式是整
6、式,不含能開得盡方的因數(shù)或因式的二次根式,叫做最簡二次根式。
5. 同類二次根式:化簡后被開方數(shù)相同的二次根式。
知識點(diǎn)7 二次根式的性質(zhì)
①是一個(gè)非負(fù)數(shù); ②
③ ④
⑤
知識點(diǎn)8 二次根式的運(yùn)算
(1)二次根式的加減
二次根式相加減,先把各個(gè)二次根式化成最簡二次根式,再把同類二次根式分別合并.
(2)二次根式的乘法
二次根式相乘,等于各個(gè)因式的被開方數(shù)的積的算術(shù)平方根,即
二次根式的和相乘,可參照多項(xiàng)式的乘法進(jìn)行.
兩個(gè)含有二次根式的代數(shù)式相乘,如果它們的積不含有二次根式,那么這兩個(gè)二次根式互
7、為有理化因式.
(3)二次根式的除法
二次根式相除,通常先寫成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根號化去(或分子、分母約分).把分母的根號化去,叫做分母有理化.
例題精講
例1. 如果單項(xiàng)式與的和①為0時(shí),a、m、n各為多少? ②仍為一個(gè)單項(xiàng)式,a、m、n各為多少?
解:① ②
a為有理數(shù)
例2. 因式分解:(1) (2) (3)-2x2+5xy+2y2
解:①原式=m(2x+3y)(2x-3y)
②原式
③令
∴ ∴
原式=-2(x-)(x-)
例3. (
8、1)已知的結(jié)果中不含項(xiàng),求k的值;
(2)的一個(gè)因式是,求k的值;
解:(1)a2的系數(shù)為:3k-2=0 ∴k=
(2)當(dāng)a=-1時(shí)(-1)3-(-1)2+(-1)+k=0 ∴k=3
例4. 利用簡便方法計(jì)算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)的值,
你能確定積的個(gè)位數(shù)是幾嗎?
解:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=264-1 ∵264的個(gè)位數(shù)為6 ∴積的個(gè)位數(shù)字為5
例5. x為何值時(shí),下列分式的值為0?無意義?
(1) (2)
解:當(dāng)①x=2 ②
9、x=1 時(shí)為零 當(dāng)③x=-2 ④x=2,x=-1時(shí)分式無意義
例6. 分式的約分與通分
1. 約分: 2. 通分,,
解:①原式= ②,,
例7. 先化簡后再求值:,其中
原式=×+
=+=
當(dāng)x=+1時(shí),原式=1
例8. 若最簡二次根式是同類二次根式,求a的值。
解:1+a=4a2-2=0, a1=1 , a2=-
例9. 已知:a=,求值
解:∵a= ∴a=2-<1
原式=+1 =-(a-1)+1 =-a+1+1=-a+2
當(dāng)a=時(shí),a=2-,
∴原式=-2--2++2=-2
例10. 把根號外的因式移到
10、根號內(nèi):
(1); (2); (3); (4)
解:(1)原式= (2)原式= (3)原式= (4)原式=
例11. 觀察下列各式及其驗(yàn)證過程
2。驗(yàn)證:
3。驗(yàn)證:
根據(jù)上述兩個(gè)等式及其驗(yàn)證過程的基本思路,猜想4的變形結(jié)果并進(jìn)行驗(yàn)證。
針對上述各式反映的規(guī)律,寫出用n(n為任意自然數(shù),且n≥2)表示的等式,并給出證明。
解:(1)
(2)
課后練習(xí)
一. 選擇題
1. 下列運(yùn)算正確的是( )
A. B. C. D.
2. 把a(bǔ)2-a-6分解因式,正確的是( )
A. a(a-1)-6
11、 B. (a-2)(a+3) C. (a+2)(a-3) D. (a-1)(a+6)
3. 設(shè)(x+y)(x+2+y)-15=0,則x+y的值是( ?。?
A. -5或3 B. -3或5 C. 3 D. 5
4. 不論a為何值,代數(shù)式-a2+4a-5的值( ?。?
A. 大于或等于0 B. 0 C. 大于0 D. 小于0
5. 化簡二次根式的結(jié)果是( )
A. B. C. D.
6. 下列命題:(1)任何數(shù)的平方根都有兩個(gè)(2)如
12、果一個(gè)數(shù)有立方根,那么它一定有平方根(3)算術(shù)平方根一定是正數(shù)(4)非負(fù)數(shù)的立方根不一定是非負(fù)數(shù),錯(cuò)誤的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
7. 當(dāng)1
13、x2+kx-6有一個(gè)因式是(x-2),則k的值是 ;
11. 的平方根是 ,9的算術(shù)平方根是 , 是-64的立方根。
12. 的倒數(shù)是 ;的絕對值是 。的有理化因式是 ,的有理化因式是 。
三. 計(jì)算與解答題
13. 三角形某一邊等于,第二邊比第一邊小(),而第三邊比第一邊大(),這個(gè)三角形周長為多少?
14. a、b、c為⊿ABC三邊,利用因式分解說明b2-a2+2ac-c2的符號
15. 實(shí)數(shù)范圍內(nèi)因式分解
(1)x2-2x-4 ?。?)4x2+8x-1 ?。?)2x2+4xy
14、+y2
16. 已知 x2-5xy+6y2=0 求的值
17. 試求函數(shù)t=2-的最大值和最小值。
練習(xí)答案
試題答案
一. 選擇題。
1~5 CCADB 6~7DC
二. 填空題。
8. 3x+5
9. 是原來的
10. 1
11. , 3,-4
12.
三. 解答題
13. 2a+b-()=2a+ 2a+b+()=2a+
(2a+b)+(2a+b-2)+(2a+)=6a+3b-4
14. 原式=b2-(a-c)2=(b+a-c)(b-a+c)>0
15. (1)原式=(x-1-)(x-1+)
(3)原式=2(x-)(x-)
(2)原式=4(x-)(x-)
16. 解:(x-2y)(x-3y)=0
∴x=2y或x=3y
當(dāng)x=2y時(shí),
當(dāng)x=3y時(shí),
17. 解:t=2
∵ 0≤-3(x-2)2+3≤3
∴t最大值=2,t最小值=
7