歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類(lèi) > DOC文檔下載  

2018年高考數(shù)學(xué) 100題系列 第35題 應(yīng)用正弦定理和余弦定理解三角形 文

  • 資源ID:77728171       資源大?。?span id="eqxwbta" class="font-tahoma">905KB        全文頁(yè)數(shù):20頁(yè)
  • 資源格式: DOC        下載積分:18積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開(kāi)放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要18積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫(xiě)的郵箱或者手機(jī)號(hào),方便查詢(xún)和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

2018年高考數(shù)學(xué) 100題系列 第35題 應(yīng)用正弦定理和余弦定理解三角形 文

第 35題 應(yīng)用正弦定理和余弦定理解三角形I題源探究·黃金母題【例1】在ABC中,解三角形【解析】由余弦定理得: =-=-02444,104°,都是銳角,由正弦定理得,=06468,=40°,=36°精彩解讀【試題來(lái)源】人教版A版必修5第10頁(yè)A組第4題(1)【母題評(píng)析】本題考查利用正余弦定理解三角形【思路方法】已知三角形三邊解三角形問(wèn)題,先用余弦定理求出最大邊所對(duì)的角,再用正弦定理解出其余兩角II考場(chǎng)精彩·真題回放【例2】【2017山東,理9】在中,角,的對(duì)邊分別為,若為銳角三角形,且滿足,則下列等式成立的是A B C D【答案】A【解析】所以,選A【例3】【2017浙江,14】已知ABC,AB=AC=4,BC=2 點(diǎn)D為AB延長(zhǎng)線上一點(diǎn),BD=2,連結(jié)CD,則BDC的面積是_,cosBDC=_【答案】【解析】取BC中點(diǎn)E,DC中點(diǎn)F,由題意:,ABE中,又,綜上可得,BCD面積為,【例4】【2017課標(biāo)1,理17】ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知ABC的面積為(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求ABC的周長(zhǎng)【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計(jì)算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長(zhǎng)為試題解析:(1)由題設(shè)得,即由正弦定理得故(2)由題設(shè)及(1)得,即所以,故由題設(shè)得,即由余弦定理得,即,得故的周長(zhǎng)為【例5】【2017課標(biāo)II,理17】的內(nèi)角所對(duì)的邊分別為,已知,(1)求;(2)若,的面積為,求【答案】(1);(2)【解析】試題分析:利用三角形內(nèi)角和定理可知,再利用誘導(dǎo)公式化簡(jiǎn),利用降冪公式化簡(jiǎn),結(jié)合求出;利用(1)中結(jié)論,利用勾股定理和面積公式求出,從而求出試題解析:(1)由題設(shè)及,故上式兩邊平方,整理得,解得(舍去),(2)由得,故又,則由余弦定理及得:所以b=2【命題意圖】本類(lèi)題問(wèn)題主要考查利用正弦定理、余弦定理解三角形,考查考生運(yùn)算求解能力【考試方向】這類(lèi)試題在考查題型上,通常以選擇題或填空題的形式出現(xiàn),難度中等偏易,考查基礎(chǔ)知識(shí)的識(shí)記與理解【難點(diǎn)中心】解答此類(lèi)問(wèn)題的關(guān)鍵是正余弦定理,注意確定一解還是兩解III理論基礎(chǔ)·解題原理考點(diǎn)一 正弦定理及其變形1正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等(為外接圓半徑)2. 變形:,;考點(diǎn)二 余弦定理1余弦定理:三角形任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍;2推論:;3變形:;IV題型攻略·深度挖掘【考試方向】這類(lèi)試題在考查題型上,通常以選擇題或填空題的形式出現(xiàn),一般難度較小,考查對(duì)基礎(chǔ)知識(shí)的識(shí)記與理解,考查考生基本計(jì)算能力【技能方法】1. 解三角形中正余弦定理選擇(1)已知三角形中的兩角和一角的對(duì)邊,利用正弦定理解三角形(2) 已知三角形兩邊和一邊的對(duì)角可以利用正弦定理解三角形也可以用余弦定理解三角形,注意判定三角(3)若已知三邊或已知兩邊和夾角,用余弦定理解三角形2形解得情況,如在ABC中,已知a、b和A時(shí),解的情況如下:A為銳角A為鈍角或直角圖形關(guān)系式absin Aabsin Absin Aabababab解的個(gè)數(shù)無(wú)解一解兩解一解一解無(wú)解3注意利用三角形內(nèi)角和定理:溝通三個(gè)內(nèi)角的關(guān)系4常用結(jié)論:;【易錯(cuò)指導(dǎo)】在利用正弦定理解三角形時(shí),注意判定三角形解得個(gè)數(shù),常用大邊對(duì)大角,判定一解還是兩解,要熟記上邊表格中解得個(gè)數(shù)的判定方法V舉一反三·觸類(lèi)旁通考向1 正弦定理應(yīng)用【例6】【2017課表1,文11】ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c已知,a=2,c=,則C=ABCD【答案】B【解析】試題分析:由題意得,即,所以由正弦定理得,即,得,故選B【考點(diǎn)】解三角形【名師點(diǎn)睛】在解有關(guān)三角形的題目時(shí),要有意識(shí)地考慮用哪個(gè)定理更合適,或是兩個(gè)定理都要用,要抓住能夠利用某個(gè)定理的信息一般地,如果式子中含有角的余弦或邊的二次式時(shí),要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到【例7】【2017課標(biāo)3,文15】ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c已知C=60°,b=,c=3,則A=_【答案】75°【考點(diǎn)】正弦定理【名師點(diǎn)睛】解三角形問(wèn)題,多為邊和角的求值問(wèn)題,這就需要根據(jù)正、余弦定理結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關(guān)系,從而達(dá)到解決問(wèn)題的目的其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標(biāo)出來(lái),然后確定轉(zhuǎn)化的方向第二步:定工具,即根據(jù)條件和所求合理選擇轉(zhuǎn)化的工具,實(shí)施邊角之間的互化第三步:求結(jié)果【例8】【2017北京,理15】在ABC中, =60°,c=a()求sinC的值;()若a=7,求ABC的面積【答案】();()試題解析:解:()在ABC中,因?yàn)?,所以由正弦定理得()因?yàn)椋杂捎嘞叶ɡ淼?,解得或(舍)所以ABC的面積 【考點(diǎn)】1正余弦定理;2三角形面積;3三角恒等變換【名師點(diǎn)睛】高考中經(jīng)常將三角變換與解三角形知識(shí)綜合起來(lái)命題,如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理實(shí)現(xiàn)邊角互化;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到而三角變換中主要是“變角、變函數(shù)名和變運(yùn)算形式”,其中的核心是“變角”,即注意角之間的結(jié)構(gòu)差異,彌補(bǔ)這種結(jié)構(gòu)差異的依據(jù)就是三角公式【跟蹤訓(xùn)練】1【2017屆廣東珠海市高三9月摸底考試數(shù)學(xué)(文)】在中,角的對(duì)邊分別為已知,則角大小為( )A B C或 D或【答案】C【解析】由正弦定理可得:,由此可得,因,故或,所以應(yīng)選2【2018遼寧模擬】在銳角中,角的對(duì)邊分別為,若, ,則的取值范圍( )A B C D【答案】B,故答案選點(diǎn)睛:在解三角形中求范圍問(wèn)題往往需要轉(zhuǎn)化為角的問(wèn)題,利用輔助角公式,結(jié)合角的范圍求得最后結(jié)果在邊角互化中,注意化簡(jiǎn)和誘導(dǎo)公式的運(yùn)用3【2018江西級(jí)階段性檢測(cè)(二)】黑板上有一道有解的解三角形的習(xí)題,一位同學(xué)不小心把其中一部分擦去了,現(xiàn)在只能看到:在中,角的對(duì)邊分別為,已知,解得,根據(jù)以上信息,你認(rèn)為下面哪個(gè)選項(xiàng)可以作為這個(gè)習(xí)題的其余已知條件( )A BC D【答案】D點(diǎn)睛:根據(jù)條件選用正弦定理與余弦定理,一般已知兩角一邊利用正弦定理,而已知一角兩邊求第三邊或已知三邊求一角往往利用余弦定理,利用正弦定理時(shí)注意根據(jù)邊的大小關(guān)系確定解的個(gè)數(shù),而利用余弦定理時(shí),有時(shí)需結(jié)合基本不等式求最值,有時(shí)需整體轉(zhuǎn)化求范圍考向2 余弦定理應(yīng)用【例9】【2017天津,理15】在中,內(nèi)角所對(duì)的邊分別為已知,()求和的值;()求的值【答案】 (1) (2) 【解析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進(jìn)而得到,由轉(zhuǎn)化為,求出,進(jìn)而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結(jié)果試題解析:()在中,因?yàn)?,故由,可得由已知及余弦定理,有,所以由正弦定理,得所以,的值為,的值為()由()及,得,所以,故考點(diǎn):正弦定理、余弦定理、解三角形【名師點(diǎn)睛】利用正弦定理進(jìn)行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值利用正、余弦定理解三角形問(wèn)題是高考高頻考點(diǎn),經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題【跟蹤練習(xí)】1【2018河南模擬】在中,角的對(duì)邊分別為,若,則( )A B C D【答案】D2在斜中,角的對(duì)邊分別為, ,則( )A B C D【答案】B3【2017屆河南鄭州一中網(wǎng)校高三入學(xué)測(cè)試數(shù)學(xué)(文)】設(shè)的內(nèi)角的對(duì)邊分別為,且,則_【答案】【解析】,【方法總結(jié)】對(duì)已知三角形的兩邊和夾角求其中一邊的對(duì)角正弦問(wèn)題,先用余弦定理求出已知角的對(duì)角,再用正弦定理求出所求角的正弦值考向3 正弦定理與余弦定理的綜合應(yīng)用【例10】【2017天津,文15】在中,內(nèi)角所對(duì)的邊分別為已知,(I)求的值;(II)求的值【答案】() ;() 【解析】試題分析()首先根據(jù)正弦定理代入得到,再根據(jù)余弦定理求得;()根據(jù)()的結(jié)論和條件,根據(jù)求,和 以及正弦定理求得 ,再求,以及,最后代入求的值 試題解析:()解:由,及,得由,及余弦定理,得()解:由(),可得,代入,得由()知,A為鈍角,所以于是,故【考點(diǎn)】1正余弦定理;2三角恒等變換【名師點(diǎn)睛】高考中經(jīng)常將三角變換與解三角形知識(shí)綜合起來(lái)命題,如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理實(shí)現(xiàn)邊角互化;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到而三角變換中主要是“變角、變函數(shù)名和變運(yùn)算形式”,其中的核心是“變角”,即注意角之間的結(jié)構(gòu)差異,彌補(bǔ)這種結(jié)構(gòu)差異的依據(jù)就是三角公式【例11】已知為的角平分線,則 【答案】【方法點(diǎn)睛】先由余弦定理求出邊BC的長(zhǎng),利用角平分線性質(zhì)求出CD,利用正弦定理求出C角,再在ACD中運(yùn)用正弦定理求出AD【跟蹤練習(xí)】1在ABC中,B=,AB=,A的角平分線AD=,則AC=_【答案】【解析】由正弦定理得,即,解得,從而,所以,2【2108遼寧莊河市高級(jí)中學(xué)、沈陽(yáng)市第二十中學(xué)第一次聯(lián)考】已知函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減如圖,四邊形中, 為的內(nèi)角的對(duì)邊,且滿足(1)證明: ;(2)若,設(shè), , ,求四邊形面積的最大值【答案】(1)見(jiàn)解析;(2)試題解析:(1)由題意知: ,解得: , , ,(2)因?yàn)椋?,所以,所以為等邊三角形, ,當(dāng)且僅當(dāng),即時(shí)取最大值, 的最大值為考向4 正余弦定理與向量交匯【例12】【2017山東,文17】(本小題滿分12分)在ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知b=3,SABC=3,求A和a【答案】【解析】【考點(diǎn)】解三角形【名師點(diǎn)睛】正、余弦定理是應(yīng)用極為廣泛的兩個(gè)定理,它將三角形的邊和角有機(jī)地聯(lián)系起來(lái),從而使三角與幾何產(chǎn)生聯(lián)系,為求與三角形有關(guān)的量(如面積、外接圓、內(nèi)切圓半徑和面積等)提供了理論依據(jù),也是判斷三角形形狀、證明三角形中有關(guān)等式的重要依據(jù)其主要方法有:化角法,化邊法,面積法,運(yùn)用初等幾何法注意體會(huì)其中蘊(yùn)涵的函數(shù)與方程思想、等價(jià)轉(zhuǎn)化思想及分類(lèi)討論思想【例13】在中,內(nèi)角對(duì)邊分別為,且,已知,(1)求和的值;(2)求的值(2)在中,為銳角,【名師點(diǎn)睛】涉及到平面向量的三角形問(wèn)題,利用平面向量的相關(guān)知識(shí),將條件轉(zhuǎn)化為三角形的邊角條件,再利用正余弦定理求解【跟蹤練習(xí)】1三角形中,則角=_【答案】 【解析】由題,則可得;利用余弦定理可得;,再由余弦定理可得;2【2017甘肅模擬】已知向量, ,設(shè)函數(shù)(1)求函數(shù)的最小正周期;(2)已知分別為三角形的內(nèi)角對(duì)應(yīng)的三邊長(zhǎng), 為銳角, , ,且恰是函數(shù)在上的最大值,求和三角形的面積【答案】(1);(2),或, 或試題解析:(1)4分因?yàn)?,所以最小正周?分(2)由(1)知,當(dāng)時(shí),由正弦函數(shù)圖象可知,當(dāng)時(shí), 取得最大值,又為銳角所以8分由余弦定理得,所以或經(jīng)檢驗(yàn)均符合題意 10分從而當(dāng)時(shí),的面積; 11分當(dāng)時(shí),12分考點(diǎn):平面向量的數(shù)量積、二倍角公式、兩角和的正弦公式、三角函數(shù)、余弦定理、三角形面積考向5 與三角函數(shù)交匯【例14】【2017河北滄州一中第一次月考】在中,已知(1)求的長(zhǎng);(2)求的值【方法總結(jié)】對(duì)涉及到三角形角三角函數(shù)式求值問(wèn)題,常利用三角形內(nèi)角和定理化為某個(gè)角的三角函數(shù)問(wèn)題,利用三角函數(shù)公式求值【跟蹤練習(xí)】1設(shè)銳角的三內(nèi)角、所對(duì)邊的邊分別為、,且,則的取值范圍( )A B C D【答案】A【解析】,由正弦定理得,因?yàn)?,又因?yàn)?,故?【2018河南中原名校一摸】已知函數(shù)的圖象的兩條相鄰對(duì)稱(chēng)軸間的距離等于,在ABC中,角A,B,C所對(duì)的邊依次為a,b,c,若, b+c=3,求ABC的面積【答案】試題解析: 3分函數(shù)的最小正周期,由題意得:,即解得: 5分,即 7分由余弦定理得:即 , 9分 ,聯(lián)立,解得:,則 12分考點(diǎn):1、二倍角公式和輔助角公式;2、余弦定理;3、三角形面積公式20

注意事項(xiàng)

本文(2018年高考數(shù)學(xué) 100題系列 第35題 應(yīng)用正弦定理和余弦定理解三角形 文)為本站會(huì)員(dream****gning)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!