(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí)精準(zhǔn)提分 第二篇 重點(diǎn)專題分層練中高檔題得高分 第21練 基本初等函數(shù)、函數(shù)的應(yīng)用試題.docx
第21練基本初等函數(shù)、函數(shù)的應(yīng)用明晰考情1.命題角度:考查二次函數(shù)、分段函數(shù)、冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的圖象與性質(zhì);以基本初等函數(shù)為依托,考查函數(shù)與方程的關(guān)系、函數(shù)零點(diǎn)存在性定理;能利用函數(shù)解決簡(jiǎn)單的實(shí)際問題.2.題目難度:中檔偏難考點(diǎn)一冪、指數(shù)、對(duì)數(shù)的運(yùn)算與大小比較方法技巧冪、指數(shù)、對(duì)數(shù)的大小比較方法(1)單調(diào)性法;(2)中間值法1(2018浙江省杭州市第二中學(xué)模擬)已知0<a<b<1,則()A(1a)>(1a)bB(1a)b>(1a)C(1a)a>(1b)bD(1a)a>(1b)b答案D解析因?yàn)?<a<1,所以0<1a<1,所以y(1a)x是減函數(shù),又因?yàn)?<b<1,所以>b,b>,所以(1a)<(1a)b,(1a)b<(1a),所以A,B兩項(xiàng)均錯(cuò);又1<1a<1b,所以(1a)a<(1b)a<(1b)b,所以C錯(cuò);對(duì)于D,(1a)a>(1a)b>(1b)b,所以(1a)a>(1b)b,故選D.2(2018金華浦江適應(yīng)性考試)設(shè)正實(shí)數(shù)a,b滿足6a2b,則( )A0<<1B1<<2C2<<3D3<<4答案C解析6a2b,aln6bln2,11log23,1log232,2<<3,故選C.3若實(shí)數(shù)a>b>1且logablogba,則logab_,_.答案1解析logablogbalogablogab2或,因?yàn)閍>b>1,所以logab<1,所以logabbb2a,1.4已知m,n4x,則log4m_;滿足lognm>1的實(shí)數(shù)x的取值范圍是_答案解析m,所以log4mlog2;>1,解得x的取值范圍是.考點(diǎn)二基本初等函數(shù)的性質(zhì)方法技巧(1)指數(shù)函數(shù)的圖象過(guò)定點(diǎn)(0,1),對(duì)數(shù)函數(shù)的圖象過(guò)定點(diǎn)(1,0)(2)應(yīng)用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,要注意底數(shù)的范圍,底數(shù)不同的盡量化成相同的底數(shù)(3)解題時(shí)要注意把握函數(shù)的圖象,利用圖象研究函數(shù)的性質(zhì)5已知函數(shù)f(x)則f(2019)等于()A2018B2C2020D.答案D解析f(2019)f(2018)1f(0)2019f(1)2020212020.6函數(shù)y4cosxe|x|(e為自然對(duì)數(shù)的底數(shù))的圖象可能是()答案A解析易知y4cosxe|x|為偶函數(shù),排除B,D,又當(dāng)x0時(shí),y3,排除C,故選A.7已知函數(shù)f(x)|lg(x1)|,若1ab且f(a)f(b),則a2b的取值范圍為()A(32,) B32,)C(6,) D6,)答案C解析由圖象可知b2,1a2,lg(a1)lg(b1),則a,則a2b2b2(b1)3,由對(duì)勾函數(shù)的性質(zhì)知,當(dāng)b時(shí),f(b)2(b1)3單調(diào)遞增,b2,a2b2b6.8設(shè)函數(shù)f(x)則滿足f(f(t)2f(t)的t的取值范圍是_答案解析若f(t)1,顯然成立,則有或解得t.若f(t)<1,由f(f(t)2f(t),可知f(t)1,所以t1,得t3.綜上,實(shí)數(shù)t的取值范圍是.考點(diǎn)三函數(shù)與方程方法技巧(1)判斷函數(shù)零點(diǎn)個(gè)數(shù)的主要方法:解方程f(x)0,直接求零點(diǎn);利用零點(diǎn)存在性定理;數(shù)形結(jié)合法:通過(guò)分解轉(zhuǎn)化為兩個(gè)能畫出的函數(shù)圖象交點(diǎn)問題(2)解由函數(shù)零點(diǎn)的存在情況求參數(shù)的值或取值范圍問題,關(guān)鍵是利用函數(shù)與方程思想或數(shù)形結(jié)合思想,構(gòu)建關(guān)于參數(shù)的方程或不等式求解9已知f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)x23x,則函數(shù)g(x)f(x)x3的零點(diǎn)的集合為()A1,3B3,1,1,3C2,1,3D2,1,3答案D解析當(dāng)x0時(shí),g(x)x24x3,由g(x)0,得x1或x3.當(dāng)x0時(shí),g(x)x24x3,由g(x)0,得x2(舍)或x2.所以g(x)的零點(diǎn)的集合為2,1,310設(shè)函數(shù)f(x)則方程16f(x)lg|x|0的實(shí)根個(gè)數(shù)為()A8B9C10D11答案C解析方程16f(x)lg|x|0的實(shí)根個(gè)數(shù)等價(jià)于函數(shù)f(x)與函數(shù)g(x)的交點(diǎn)的個(gè)數(shù),在平面直角坐標(biāo)系內(nèi)畫出函數(shù)f(x)及g(x)的圖象由圖易得兩函數(shù)圖象在(1,0)內(nèi)有1個(gè)交點(diǎn),在(1,10)內(nèi)有9個(gè)交點(diǎn),所以兩函數(shù)圖象共有10個(gè)交點(diǎn),即方程16f(x)lg|x|0的實(shí)根的個(gè)數(shù)為10,故選C.11已知函數(shù)f(x)若關(guān)于x的方程f(x)k0有唯一一個(gè)實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是_答案0,1)(2,)解析畫出函數(shù)f(x)的圖象如圖所示,結(jié)合圖象可以看出當(dāng)0k<1或k>2時(shí)符合題設(shè)12已知函數(shù)f(x)若方程f(x)xa有2個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍是_答案a|a1或0a<1或a>1解析當(dāng)直線yxa與曲線ylnx相切時(shí),設(shè)切點(diǎn)為(t,lnt),則切線斜率k(lnx)|xt1,所以t1,切點(diǎn)坐標(biāo)為(1,0),代入yxa,得a1.又當(dāng)x0時(shí),f(x)xa(x1)(xa)0,所以當(dāng)a1時(shí),lnxxa(x>0)有1個(gè)實(shí)根,此時(shí)(x1)(xa)0(x0)有1個(gè)實(shí)根,滿足題意;當(dāng)a<1時(shí),lnxxa(x>0)有2個(gè)實(shí)根,此時(shí)(x1)(xa)0(x0)有1個(gè)實(shí)根,不滿足題意;當(dāng)a>1時(shí),lnxxa(x>0)無(wú)實(shí)根,此時(shí)要使(x1)(xa)0(x0)有2個(gè)實(shí)根,應(yīng)有a0且a1,即a0且a1,綜上得實(shí)數(shù)a的取值范圍是a|a1或0a<1或a>11若函數(shù)f(x)axkax (a>0且a1)在(,)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)loga(xk)的大致圖象是()答案B解析由題意得f(0)0,解得k1,a>1,所以g(x)loga(x1)為(1,)上的增函數(shù),且g(0)0,故選B.2如果函數(shù)ya2x2ax1(a>0且a1)在區(qū)間1,1上的最大值是14,則a的值為()A.B1C3D.或3答案D解析令axt(t>0),則ya2x2ax1t22t1(t1)22.當(dāng)a>1時(shí),因?yàn)閤1,1,所以t,又函數(shù)y(t1)22在上單調(diào)遞增,所以ymax(a1)2214,解得a3(負(fù)值舍去);當(dāng)0<a<1時(shí),因?yàn)閤1,1,所以t,又函數(shù)y(t1)22在上單調(diào)遞增,則ymax2214,解得a(負(fù)值舍去)綜上知a3或a.3(2018全國(guó))已知函數(shù)f(x)g(x)f(x)xa.若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是()A1,0) B0,)C1,) D1,)答案C解析令h(x)xa,則g(x)f(x)h(x)在同一坐標(biāo)系中畫出yf(x),yh(x)圖象的示意圖,如圖所示若g(x)存在2個(gè)零點(diǎn),則yf(x)的圖象與yh(x)的圖象有2個(gè)交點(diǎn),平移yh(x)的圖象可知,當(dāng)直線yxa過(guò)點(diǎn)(0,1)時(shí),有2個(gè)交點(diǎn),此時(shí)10a,a1.當(dāng)yxa在yx1上方,即a1時(shí),僅有1個(gè)交點(diǎn),不符合題意;當(dāng)yxa在yx1下方,即a1時(shí),有2個(gè)交點(diǎn),符合題意綜上,a的取值范圍為1,)故選C.4已知函數(shù)f(x)若|f(x)|ax,則a的取值范圍是_答案2,0解析由y|f(x)|的圖象知,當(dāng)x0時(shí),只有當(dāng)a0時(shí),才能滿足|f(x)|ax.當(dāng)x0時(shí),y|f(x)|x22x|x22x.故由|f(x)|ax,得x22xax.當(dāng)x0時(shí),不等式為00成立當(dāng)x0時(shí),不等式等價(jià)于x2a.因?yàn)閤22,所以a2.綜上可知,a2,0解題秘籍(1)基本初等函數(shù)的圖象可根據(jù)特殊點(diǎn)及函數(shù)的性質(zhì)進(jìn)行判定(2)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)有關(guān)的復(fù)合函數(shù)的性質(zhì),可使用換元法,解題中要優(yōu)先考慮函數(shù)的定義域(3)數(shù)形結(jié)合是解決方程、不等式的重要工具,指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的底數(shù)要討論1設(shè)a20.3,b30.2,c70.1,則a,b,c的大小關(guān)系為()Ac<a<bBa<c<bCa<b<cDc<b<a答案A解析由已知得a80.1,b90.1,c70.1,構(gòu)造冪函數(shù)yx0.1,根據(jù)冪函數(shù)yx0.1在區(qū)間(0,)上為增函數(shù),得c<a<b.2設(shè)a,b,c分別是方程2xx,x2x,xlog2x的實(shí)數(shù)根,則()AcbaBabcCbacDcab答案C解析因?yàn)?aa0,所以0a1.因?yàn)閎2bb0,所以b0.因?yàn)閏log2c0,所以1c2.所以b0a1c.3函數(shù)f(x)|x2|lnx在定義域內(nèi)零點(diǎn)的個(gè)數(shù)為()A0B1C2D3答案C解析由題意,函數(shù)f(x)的定義域?yàn)?0,),由函數(shù)零點(diǎn)的定義,f(x)在(0,)內(nèi)的零點(diǎn)即是方程|x2|lnx0的根令y1|x2|,y2lnx(x0),在同一坐標(biāo)系中畫出兩個(gè)函數(shù)的圖象由圖得兩個(gè)函數(shù)圖象有兩個(gè)交點(diǎn),故方程有兩個(gè)根,即對(duì)應(yīng)函數(shù)有兩個(gè)零點(diǎn)4函數(shù)y(0x3)的值域是()A(0,1 B(e3,eCe3,1D1,e答案B解析y(0x3),當(dāng)0x3時(shí),3(x1)211,e3e1,即e3ye,函數(shù)y的值域是(e3,e5函數(shù)f(x)axloga(x1)在0,1上的最大值和最小值之和為a,則a的值為()A.B.C2D4答案B解析當(dāng)a1時(shí),由aloga21a,得loga21,所以a,與a1矛盾;當(dāng)0a1時(shí),由1aloga2a,得loga21,所以a.6已知函數(shù)f(x)設(shè)m>n1,且f(m)f(n),則mf(m)的最小值為()A4B2C.D2答案D解析當(dāng)1x<1時(shí),f(x)52x,f(0)5;當(dāng)x1時(shí),f(x)15,f(4),1m<4.mf(m)m2,當(dāng)且僅當(dāng)m時(shí)取等號(hào),故選D.7若函數(shù)f(x)aexx2a有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是()A.B.C(,0) D(0,)答案D解析函數(shù)f(x)aexx2a的導(dǎo)函數(shù)f(x)aex1,當(dāng)a0時(shí),f(x)0恒成立,函數(shù)f(x)在R上單調(diào)遞減,不可能有兩個(gè)零點(diǎn);當(dāng)a0時(shí),令f(x)0,得xln,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,f(x)的最小值為f1ln2a1lna2a.令g(a)1lna2a(a0),則g(a)2.當(dāng)a時(shí),g(a)單調(diào)遞增,當(dāng)a時(shí),g(a)單調(diào)遞減,g(a)maxgln20,f(x)的最小值f0,函數(shù)f(x)aexx2a有兩個(gè)零點(diǎn)綜上,實(shí)數(shù)a的取值范圍是(0,)8函數(shù)f(x)的圖象如圖所示,則下列結(jié)論成立的是()Aa>0,b>0,c<0Ba<0,b>0,c>0Ca<0,b>0,c<0Da<0,b<0,c<0答案C解析由f(x)及圖象可知,xc,c0,則c0;當(dāng)x0時(shí),f(0)0,所以b0;當(dāng)f(x)0時(shí),axb0,所以x0,所以a0,故選C.9已知冪函數(shù)f(x)(n22n2)(nZ)的圖象關(guān)于y軸對(duì)稱,且在(0,)上是減函數(shù),那么n的值為_答案1解析由于f(x)為冪函數(shù),所以n22n21,解得n1或n3,經(jīng)檢驗(yàn),只有n1符合題意10已知函數(shù)f(x)若函數(shù)g(x)f(f(x)a有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是_答案1,)解析設(shè)tf(x),令f(f(x)a0,則af(t)在同一坐標(biāo)系內(nèi)作ya,yf(t)的圖象(如圖)當(dāng)a1時(shí),ya與yf(t)的圖象有兩個(gè)交點(diǎn)設(shè)交點(diǎn)的橫坐標(biāo)為t1,t2(不妨設(shè)t2>t1)且t1<1,t21,當(dāng)t1<1時(shí),t1f(x)有一解;當(dāng)t21時(shí),t2f(x)有兩解當(dāng)a<1時(shí),只有一個(gè)零點(diǎn)綜上可知,當(dāng)a1時(shí),函數(shù)g(x)f(f(x)a有三個(gè)不同的零點(diǎn)11已知函數(shù)f(x)則f_,若f(x)ax1有三個(gè)零點(diǎn),則a的取值范圍是_答案(4,)解析因?yàn)閒log2,所以ff23.x0顯然不是函數(shù)f(x)ax1的零點(diǎn),則當(dāng)x0時(shí),由f(x)ax1有三個(gè)零點(diǎn)知,a有三個(gè)根,即函數(shù)y與函數(shù)ya的圖象有三個(gè)交點(diǎn),如圖所示,當(dāng)x0時(shí),兩個(gè)函數(shù)只有一個(gè)交點(diǎn),則當(dāng)x0時(shí),函數(shù)ya與函數(shù)yx有兩個(gè)交點(diǎn),則存在x,使ax成立,即ax24(當(dāng)且僅當(dāng)x2時(shí),等號(hào)成立),即a4.12已知函數(shù)f(x)(a>0且a1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|2x恰好有兩個(gè)不相等的實(shí)數(shù)解,則a的取值范圍是_答案解析畫出函數(shù)y|f(x)|的圖象如圖,結(jié)合圖象可知當(dāng)直線y2x與函數(shù)yx23a相切時(shí),由14(3a2)0,解得a,此時(shí)滿足題設(shè);由函數(shù)yf(x)是單調(diào)遞減函數(shù)可知,03aloga(01)1,即a,所以當(dāng)23a時(shí),即a時(shí),函數(shù)y|f(x)|與函數(shù)y2x恰有兩個(gè)不同的交點(diǎn),即方程|f(x)|2x恰好有兩個(gè)不相等的實(shí)數(shù)解,綜上所求實(shí)數(shù)a的取值范圍是a或a.