(通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 第二篇 第23練 函數(shù)的概念、圖象與性質(zhì)精準(zhǔn)提分練習(xí) 文.docx
第23練函數(shù)的概念、圖象與性質(zhì)明晰考情1.命題角度:以基本初等函數(shù)為載體,考查函數(shù)的定義域、最值、奇偶性、單調(diào)性和周期性;利用函數(shù)的圖象研究函數(shù)性質(zhì),能用函數(shù)的圖象性質(zhì)解決簡(jiǎn)單問(wèn)題.2.題目難度:中檔難度.考點(diǎn)一函數(shù)及其表示要點(diǎn)重組(1)給出解析式的函數(shù)的定義域是使解析式有意義的自變量的集合;探求抽象函數(shù)的定義域要把握一個(gè)原則:f(g(x)中g(shù)(x)的范圍與f(x)中x的范圍相同.(2)對(duì)于分段函數(shù)的求值問(wèn)題,必須依據(jù)條件準(zhǔn)確地找出利用哪一段求解;形如f(g(x)的函數(shù)求值時(shí),應(yīng)遵循先內(nèi)后外的原則.1.(2017山東)設(shè)函數(shù)y的定義域?yàn)锳,函數(shù)yln(1x)的定義域?yàn)锽,則AB等于()A.(1,2) B.(1,2 C.(2,1) D.2,1)答案D解析4x20,2x2,A2,2.1x0,x1,B(,1).AB2,1),故選D.2.設(shè)函數(shù)f(x)則f(2)f(log212)等于()A.3B.6C.9D.12答案C解析因?yàn)?<1,log212>log283>1,所以f(2)1log22(2)1log243,f(log212)21126,故f(2)f(log212)369.3.若函數(shù)yf(x)的定義域是0,2,則函數(shù)g(x)的定義域是_.答案0,1)解析由得0x1,函數(shù)g(x)的定義域?yàn)?,1).4.函數(shù)f(x)(a0且a1)的值域?yàn)開(kāi).答案(2017,2)解析f(x)2,因?yàn)閍x0,所以ax11,所以02019,所以201722,故函數(shù)f(x)的值域?yàn)?2017,2).考點(diǎn)二函數(shù)的圖象及應(yīng)用方法技巧(1)函數(shù)圖象的判斷方法找特殊點(diǎn);看性質(zhì):根據(jù)函數(shù)性質(zhì)判斷圖象的位置,對(duì)稱(chēng)性,變化趨勢(shì)等;看變換:看函數(shù)是由基本初等函數(shù)經(jīng)過(guò)怎樣的變換得到.(2)利用圖象可確定函數(shù)的性質(zhì)、方程與不等式的解等問(wèn)題.5.(2017全國(guó))函數(shù)y1x的部分圖象大致為()答案D解析當(dāng)x時(shí),0,1x,y1x,故排除選項(xiàng)B.當(dāng)0x時(shí),y1x0,故排除選項(xiàng)A,C.故選D.6.已知f(x)2x1,g(x)1x2,規(guī)定:當(dāng)|f(x)|g(x)時(shí),h(x)|f(x)|;當(dāng)|f(x)|<g(x)時(shí),h(x)g(x),則h(x)()A.有最小值1,最大值1B.有最大值1,無(wú)最小值C.有最小值1,無(wú)最大值D.有最大值1,無(wú)最小值答案C解析畫(huà)出y|f(x)|2x1|與yg(x)1x2的圖象,它們交于A,B兩點(diǎn).由“規(guī)定”,在A,B兩側(cè),|f(x)|g(x),故h(x)|f(x)|;在A,B之間,|f(x)|<g(x),故h(x)g(x).綜上可知,yh(x)的圖象是圖中的實(shí)線部分,因此h(x)有最小值1,無(wú)最大值.7.函數(shù)y的圖象與函數(shù)y2sinx(2x4)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于_.答案8解析如圖,兩個(gè)函數(shù)圖象都關(guān)于點(diǎn)(1,0)成中心對(duì)稱(chēng),兩個(gè)圖象在2,4上共8個(gè)交點(diǎn),每?jī)蓚€(gè)對(duì)應(yīng)交點(diǎn)橫坐標(biāo)之和為2.故所有交點(diǎn)的橫坐標(biāo)之和為8.8.若關(guān)于x的不等式4ax13x4(a0,且a1)對(duì)于任意的x2恒成立,則a的取值范圍為_(kāi).答案解析不等式4ax13x4等價(jià)于ax1x1.令f(x)ax1,g(x)x1,當(dāng)a1時(shí),在同一坐標(biāo)系中作出兩個(gè)函數(shù)的圖象,如圖1所示,由圖1知不滿(mǎn)足題意;當(dāng)0a1時(shí),在同一坐標(biāo)系中作出兩個(gè)函數(shù)的圖象,如圖2所示,則f(2)g(2),即a2121,即a,所以a的取值范圍是.考點(diǎn)三函數(shù)的性質(zhì)與應(yīng)用要點(diǎn)重組(1)利用函數(shù)的奇偶性和周期性可以轉(zhuǎn)化函數(shù)的解析式、圖象和性質(zhì),把不在已知區(qū)間上的問(wèn)題,轉(zhuǎn)化到已知區(qū)間上求解.(2)函數(shù)單調(diào)性的應(yīng)用:可以比較大小、求函數(shù)最值、解不等式、證明方程根的唯一性.(3)函數(shù)周期性的常用結(jié)論:若f(xa)f(x)或f(xa),則2a是函數(shù)f(x)的周期.9.已知f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)3xm(m為常數(shù)),則f(log35)的值為()A.4B.4C.6D.6答案B解析由f(x)是定義在R上的奇函數(shù),得f(0)1m0,解得m1,f(log35)f(log35)(1)4,故選B.10.設(shè)函數(shù)yf(x)(xR)為偶函數(shù),且xR,滿(mǎn)足ff,當(dāng)x2,3時(shí),f(x)x,則當(dāng)x2,0時(shí),f(x)_.答案3|x1|解析f(x)的周期T2,當(dāng)x0,1時(shí),x22,3,f(x)f(x2)x2.又f(x)為偶函數(shù),當(dāng)x1,0時(shí),x0,1,f(x)x2,f(x)x2;當(dāng)x2,1時(shí),x20,1,f(x)f(x2)x4.綜上,當(dāng)x2,0時(shí),f(x)3|x1|.11.已知偶函數(shù)f,當(dāng)x時(shí),f(x)sinx.設(shè)af(1),bf(2),cf(3),則a,b,c的大小關(guān)系是_.(用“<”連接)答案c<a<b解析因?yàn)楹瘮?shù)f為偶函數(shù),所以ff,即函數(shù)f(x)的圖象關(guān)于直線x對(duì)稱(chēng),即f(x)f(x).又因?yàn)楫?dāng)x時(shí),f(x)sinx,所以函數(shù)f(x)在上單調(diào)遞增,在上單調(diào)遞減,因?yàn)?<1<3,所以f(2)>f(1)f(1)>f(3),即c<a<b.12.已知函數(shù)yf(x),xR,有下列四個(gè)命題:若f(12x)f(12x),則f(x)的圖象關(guān)于直線x1對(duì)稱(chēng);yf(x2)與yf(2x)的圖象關(guān)于直線x2對(duì)稱(chēng);若f(x)為偶函數(shù),且f(2x)f(x),則f(x)的圖象關(guān)于直線x2對(duì)稱(chēng);若f(x)為奇函數(shù),且f(x)f(x2),則f(x)的圖象關(guān)于直線x1對(duì)稱(chēng).其中正確命題的序號(hào)為_(kāi).答案解析對(duì)于,1,故函數(shù)yf(x)的圖象關(guān)于直線x1對(duì)稱(chēng),故正確;對(duì)于,令tx2,則問(wèn)題等價(jià)于yf(t)與yf(t)圖象的對(duì)稱(chēng)問(wèn)題,顯然這兩個(gè)函數(shù)的圖象關(guān)于直線t0對(duì)稱(chēng),即函數(shù)yf(x2)與yf(2x)的圖象關(guān)于直線x20,即x2對(duì)稱(chēng),故正確;對(duì)于,由f(x2)f(x),可得f(x4)f(x2)f(x),我們只能得到函數(shù)的周期為4,即只能推得函數(shù)yf(x)的圖象關(guān)于直線x4k(kZ)對(duì)稱(chēng),不能推得函數(shù)yf(x)的圖象關(guān)于直線x2對(duì)稱(chēng),故錯(cuò)誤;對(duì)于,由于函數(shù)f(x)為奇函數(shù),且f(x)f(x2),可得f(x)f(x2),由于1,可得函數(shù)yf(x)的圖象關(guān)于直線x1對(duì)稱(chēng),故正確.1.已知函數(shù)f(x)的定義域?yàn)?1,1),則函數(shù)g(x)ff(x1)的定義域?yàn)?)A.(2,0) B.(2,2)C.(0,2) D.答案C解析由題意得解得故0x2.故選C.2.已知函數(shù)f(x)為R上的減函數(shù),則滿(mǎn)足ff(1)的實(shí)數(shù)x的取值范圍是()A.(1,1) B.(0,1)C.(1,0)(0,1) D.(,1)(1,)答案C解析由f(x)為R上的減函數(shù)且ff(1),得即1x0或0x1.3.已知函數(shù)f(x)若a,b,c互不相等,且f(a)f(b)f(c),則abc的取值范圍是()A.(1,2016) B.1,2 016C.(2,2017) D.2,2 017答案C解析在平面直角坐標(biāo)系中畫(huà)出f(x)的圖象,如圖所示.設(shè)abc,要滿(mǎn)足存在互不相等的a,b,c,使f(a)f(b)f(c),則a,b關(guān)于直線x對(duì)稱(chēng),可得ab1,1c2016,故abc的取值范圍是(2,2017).解題秘籍(1)從映射的觀點(diǎn)理解抽象函數(shù)的定義域,如函數(shù)yf(g(x)中,若函數(shù)yf(x)的定義域?yàn)锳,則有g(shù)(x)A.(2)利用函數(shù)的性質(zhì)求函數(shù)值時(shí),要靈活應(yīng)用性質(zhì)對(duì)函數(shù)值進(jìn)行轉(zhuǎn)換.(3)解題中要利用數(shù)形結(jié)合的思想,將函數(shù)圖象、性質(zhì)有機(jī)結(jié)合.1.函數(shù)f(x)的定義域是()A.B.C.D.0,1)答案D解析要使函數(shù)有意義,需即0x1.故函數(shù)的定義域?yàn)?,1),故選D.2.若函數(shù)f(x)則f(f(2)等于()A.1B.4C.0D.5e2答案A解析由題意知,f(2)541,f(1)e01,所以f(f(2)1.3.(2018全國(guó))函數(shù)f(x)的圖象大致為()答案B解析yexex是奇函數(shù),yx2是偶函數(shù),f(x)是奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱(chēng),排除A選項(xiàng).當(dāng)x1時(shí),f(1)e0,排除D選項(xiàng).又e2,e,排除C選項(xiàng).故選B.4.如果函數(shù)f(x)ax22x3在區(qū)間(,4)上是單調(diào)遞增的,則實(shí)數(shù)a的取值范圍是()A.B.C.D.答案D解析當(dāng)a0時(shí),f(x)2x3,在定義域R上是單調(diào)遞增的,故在(,4)上單調(diào)遞增;當(dāng)a0時(shí),二次函數(shù)f(x)的對(duì)稱(chēng)軸為x.因?yàn)閒(x)在(,4)上單調(diào)遞增,所以a0,且4,解得a0.綜上所述a的取值范圍是.5.已知函數(shù)g(x)的定義域?yàn)閤|x0,且g(x)0,設(shè)p:函數(shù)f(x)g(x)是偶函數(shù);q:函數(shù)g(x)是奇函數(shù),則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案C解析令h(x)(x0),易得h(x)h(x)0,則h(x)為奇函數(shù),又g(x)是奇函數(shù),所以f(x)為偶函數(shù);反過(guò)來(lái)也成立.因此p是q的充要條件.6.已知定義在R上的函數(shù)f(x)2|xm|1(m為實(shí)數(shù))為偶函數(shù).記af(log0.53),bf(log25),cf(2m),則a,b,c的大小關(guān)系為()A.abcB.acbC.cabD.cba答案C解析由f(x)2|xm|1是偶函數(shù),得m0,則f(x)2|x|1.當(dāng)x0,)時(shí),f(x)2x1單調(diào)遞增,又af(log0.53)f(|log0.53|)f(log23),cf(0),且0log23log25,則f(0)f(log23)f(log25),即cab,故選C.7.已知函數(shù)f(x)若f(4)3,則f(x)>0的解集為()A.x|x>1B.x|1<x0C.x|x>1且x0D.答案D解析因?yàn)閒(4)2a3,所以a1.所以不等式f(x)>0等價(jià)于即x>,或即1<x0,所以f(x)>0的解集為.8.設(shè)函數(shù)f(x)在區(qū)間3,4上的最大值和最小值分別為M,m,則等于()A.B.C.D.答案D解析易知f(x)2,所以f(x)在區(qū)間3,4上單調(diào)遞減,所以Mf(3)26,mf(4)24,所以.9.(2018全國(guó))已知函數(shù)f(x)ln(x)1,f(a)4,則f(a)_.答案2解析f(x)f(x)ln(x)1ln(x)1ln(1x2x2)22,f(a)f(a)2,f(a)2.10.設(shè)函數(shù)f(x)ln(1|x|),則使得f(x)f(2x1)成立的x的取值范圍是_.答案解析函數(shù)f(x)為偶函數(shù).當(dāng)x0時(shí),f(x)ln(1x),在0,)上yln(1x)單調(diào)遞增,y也單調(diào)遞增,根據(jù)單調(diào)性的性質(zhì)知,f(x)在0,)上單調(diào)遞增.綜上可知,f(x)f(2x1)f(|x|)f(|2x1|)|x|2x1|x2(2x1)23x24x10x1.11.已知函數(shù)f(x)若af(a)f(a)>0,則實(shí)數(shù)a的取值范圍為_(kāi).答案(,2)(2,)解析當(dāng)a>0時(shí),a2a3(a)>0a22a>0a>2;當(dāng)a0時(shí),3a(a)2(a)<0a22a>0a<2.綜上,實(shí)數(shù)a的取值范圍為(,2)(2,).12.能夠把圓O:x2y216的周長(zhǎng)和面積同時(shí)分為相等的兩部分的函數(shù)稱(chēng)為圓O的“和諧函數(shù)”,下列函數(shù)是圓O的“和諧函數(shù)”的是_.(填序號(hào))f(x)exex;f(x)ln;f(x)tan;f(x)4x3x.答案解析由“和諧函數(shù)”的定義知,若函數(shù)為“和諧函數(shù)”,則該函數(shù)為過(guò)原點(diǎn)的奇函數(shù),中,f(0)e0e02,所以f(x)exex的圖象不過(guò)原點(diǎn),故f(x)exex不是“和諧函數(shù)”;中,f(0)lnln10,f(x)的定義域?yàn)?5,5),且f(x)lnlnf(x),所以f(x)為奇函數(shù),所以f(x)ln為“和諧函數(shù)”;中,f(0)tan00,f(x)的定義域?yàn)閤|x2k,kZ,且f(x)tantanf(x),f(x)為奇函數(shù),故f(x)tan為“和諧函數(shù)”;中,f(0)0,且f(x)的定義域?yàn)镽,f(x)為奇函數(shù),故f(x)4x3x為“和諧函數(shù)”,所以中的函數(shù)都是“和諧函數(shù)”.