歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2019年高考數(shù)學(xué)二輪復(fù)習(xí) 專題六 直線、圓、圓錐曲線 專題能力訓(xùn)練17 直線與圓錐曲線 文.doc

  • 資源ID:6273078       資源大小:1.55MB        全文頁(yè)數(shù):10頁(yè)
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開(kāi)放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

2019年高考數(shù)學(xué)二輪復(fù)習(xí) 專題六 直線、圓、圓錐曲線 專題能力訓(xùn)練17 直線與圓錐曲線 文.doc

專題能力訓(xùn)練17直線與圓錐曲線一、能力突破訓(xùn)練1.過(guò)拋物線C:y2=4x的焦點(diǎn)F,且斜率為3的直線交C于點(diǎn)M(M在x軸的上方),l為C的準(zhǔn)線,點(diǎn)N在l上且MNl,則M到直線NF的距離為()A.5B.22C.23D.332.與拋物線y2=8x相切傾斜角為135的直線l與x軸和y軸的交點(diǎn)分別是A和B,那么過(guò)A,B兩點(diǎn)的最小圓截拋物線y2=8x的準(zhǔn)線所得的弦長(zhǎng)為()A.4B.22C.2D.23.設(shè)拋物線C:y2=4x的焦點(diǎn)為F,直線l過(guò)F且與C交于A,B兩點(diǎn).若|AF|=3|BF|,則l的方程為()A.y=x-1或y=-x+1B.y=33(x-1)或y=-33(x-1)C.y=3(x-1)或y=-3(x-1)D.y=22(x-1)或y=-22(x-1)4.在平面直角坐標(biāo)系xOy中,雙曲線C1:x2a2-y2b2=1(a>0,b>0)的漸近線與拋物線C2:x2=2py(p>0)交于點(diǎn)O,A,B.若OAB的垂心為C2的焦點(diǎn),則C1的離心率為.5.(2018全國(guó),文20)設(shè)拋物線C:y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)F且斜率為k(k>0)的直線l與C交于A,B兩點(diǎn),|AB|=8.(1)求l的方程.(2)求過(guò)點(diǎn)A,B且與C的準(zhǔn)線相切的圓的方程.6.已知橢圓C的兩個(gè)頂點(diǎn)分別為A(-2,0),B(2,0),焦點(diǎn)在x軸上,離心率為32.(1)求橢圓C的方程;(2)點(diǎn)D為x軸上一點(diǎn),過(guò)D作x軸的垂線交橢圓C于不同的兩點(diǎn)M,N,過(guò)D作AM的垂線交BN于點(diǎn)E.求證:BDE與BDN的面積之比為45.7.在平面直角坐標(biāo)系xOy中,過(guò)橢圓M:x2a2+y2b2=1(a>b>0)右焦點(diǎn)的直線x+y-3=0交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為.(1)求M的方程;(2)C,D為M上兩點(diǎn),若四邊形ACBD的對(duì)角線CDAB,求四邊形ACBD面積的最大值.8.已知橢圓C的中心在坐標(biāo)原點(diǎn),右焦點(diǎn)為F(1,0),A,B是橢圓C的左、右頂點(diǎn),D是橢圓C上異于A,B的動(dòng)點(diǎn),且ADB面積的最大值為2.(1)求橢圓C的方程.(2)是否存在一定點(diǎn)E(x0,0)(0<x0<2),使得當(dāng)過(guò)點(diǎn)E的直線l與曲線C相交于M,N兩點(diǎn)時(shí),1|EM|2+1|EN|2為定值?若存在,求出定點(diǎn)和定值;若不存在,請(qǐng)說(shuō)明理由.二、思維提升訓(xùn)練9.(2018全國(guó),文20)已知斜率為k的直線l與橢圓C:x24+y23=1交于A,B兩點(diǎn),線段AB的中點(diǎn)為M(1,m)(m>0).(1)證明:k<-;(2)設(shè)F為C的右焦點(diǎn),P為C上一點(diǎn),且FP+FA+FB=0.證明:2|FP|=|FA|+|FB|.10.已知橢圓E:x2a2+y2b2=1(a>b>0)的一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)P3,12在橢圓E上.(1)求橢圓E的方程;(2)設(shè)不過(guò)原點(diǎn)O且斜率為12的直線l與橢圓E交于不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為M,直線OM與橢圓E交于C,D,證明:|MA|MB|=|MC|MD|.11.如圖,在平面直角坐標(biāo)系xOy中,橢圓E:x2a2+y2b2=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,離心率為,兩準(zhǔn)線之間的距離為8.點(diǎn)P在橢圓E上,且位于第一象限,過(guò)點(diǎn)F1作直線PF1的垂線l1,過(guò)點(diǎn)F2作直線PF2的垂線l2.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)若直線l1,l2的交點(diǎn)Q在橢圓E上,求點(diǎn)P的坐標(biāo).專題能力訓(xùn)練17直線與圓錐曲線一、能力突破訓(xùn)練1.C解析 由題意可知拋物線的焦點(diǎn)F(1,0),準(zhǔn)線l的方程為x=-1,可得直線MF:y=3(x-1),與拋物線y2=4x聯(lián)立,消去y得3x2-10x+3=0,解得x1=,x2=3.因?yàn)镸在x軸的上方,所以M (3,23).因?yàn)镸Nl,且N在l上,所以N(-1,23).因?yàn)镕(1,0),所以直線NF:y=-3(x-1).所以M到直線NF的距離為|3(3-1)+23|(-3)2+12=23.2.C解析 設(shè)直線l的方程為y=-x+b,聯(lián)立直線與拋物線方程,消元得y2+8y-8b=0.因?yàn)橹本€與拋物線相切,所以=82-4(-8b)=0,解得b=-2,故直線l的方程為x+y+2=0,從而A(-2,0),B(0,-2).因此過(guò)A,B兩點(diǎn)的最小圓即為以AB為直徑的圓,其方程為(x+1)2+(y+1)2=2,而拋物線y2=8x的準(zhǔn)線方程為x=-2,此時(shí)圓心(-1,-1)到準(zhǔn)線的距離為1,故所截弦長(zhǎng)為2(2)2-12=2.3.C解析 由題意可得拋物線焦點(diǎn)F(1,0),準(zhǔn)線方程為x=-1.當(dāng)直線l的斜率大于0時(shí),如圖,過(guò)A,B兩點(diǎn)分別向準(zhǔn)線x=-1作垂線,垂足分別為M,N,則由拋物線定義可得,|AM|=|AF|,|BN|=|BF|.設(shè)|AM|=|AF|=3t(t>0),|BN|=|BF|=t,|BK|=x,而|GF|=2,在AMK中,由|BN|AM|=|BK|AK|,得t3t=xx+4t,解得x=2t,則cosNBK=|BN|BK|=tx=12,NBK=60,則GFK=60,即直線AB的傾斜角為60.斜率k=tan 60=3,故直線方程為y=3(x-1).當(dāng)直線l的斜率小于0時(shí),如圖,同理可得直線方程為y=-3(x-1),故選C.4. 32解析 雙曲線的漸近線為y=x.由y=bax,x2=2py,得A2bpa,2b2pa2.由y=-bax,x2=2py,得B-2bpa,2b2pa2.F0,p2為OAB的垂心,kAFkOB=-1,即2b2pa2-p22bpa-0-ba=-1,解得b2a2=54,c2a2=94,即可得e=32.5.解 (1)由題意得F(1,0),l的方程為y=k(x-1)(k>0).設(shè)A(x1,y1),B(x2,y2).由y=k(x-1),y2=4x得k2x2-(2k2+4)x+k2=0.=16k2+16>0,故x1+x2=2k2+4k2.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=4k2+4k2;由題設(shè)知4k2+4k2=8,解得k=-1(舍去),k=1.因此l的方程為y=x-1.(2)由(1)得AB的中點(diǎn)坐標(biāo)為(3,2),所以AB的垂直平分線方程為y-2=-(x-3),即y=-x+5.設(shè)所求圓的圓心坐標(biāo)為(x0,y0),則y0=-x0+5,(x0+1)2=(y0-x0+1)22+16.解得x0=3,y0=2或x0=11,y0=-6.因此所求圓的方程為(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.6.(1)解 設(shè)橢圓C的方程為x2a2+y2b2=1(a>b>0).由題意得a=2,ca=32,解得c=3.所以b2=a2-c2=1.所以橢圓C的方程為x24+y2=1.(2)證明 設(shè)M(m,n),則D(m,0),N(m,-n).由題設(shè)知m2,且n0.直線AM的斜率kAM=nm+2,故直線DE的斜率kDE=-m+2n.所以直線DE的方程為y=-m+2n(x-m),直線BN的方程為y=n2-m(x-2).聯(lián)立y=-m+2n(x-m),y=n2-m(x-2),解得點(diǎn)E的縱坐標(biāo)yE=-n(4-m2)4-m2+n2.由點(diǎn)M在橢圓C上,得4-m2=4n2.所以yE=-45n.又SBDE=12|BD|yE|=25|BD|n|,SBDN=12|BD|n|,所以BDE與BDN的面積之比為45.7.解 (1)設(shè)A(x1,y1),B(x2,y2),P(x0,y0),則x12a2+y12b2=1,x22a2+y22b2=1,y2-y1x2-x1=-1,由此可得b2(x2+x1)a2(y2+y1)=-y2-y1x2-x1=1.因?yàn)閤1+x2=2x0,y1+y2=2y0,y0x0=12,所以a2=2b2.又由題意知,M的右焦點(diǎn)為(3,0),所以a2-b2=3.所以a2=6,b2=3.所以M的方程為x26+y23=1.(2)由x+y-3=0,x26+y23=1,解得x=433,y=-33或x=0,y=3.因此|AB|=463.由題意可設(shè)直線CD的方程為y=x+n-533<n<3,設(shè)C(x3,y3),D(x4,y4).由y=x+n,x26+y23=1得3x2+4nx+2n2-6=0.于是x3,4=-2n2(9-n2)3.因?yàn)橹本€CD的斜率為1,所以|CD|=2|x4-x3|=439-n2.由已知,四邊形ACBD的面積S=12|CD|AB|=8699-n2.當(dāng)n=0時(shí),S取得最大值,最大值為863.所以四邊形ACBD面積的最大值為863.8.解 (1)設(shè)橢圓的方程為x2a2+y2b2=1(a>b>0),由已知可得ADB的面積的最大值為122ab=ab=2.F(1,0)為橢圓右焦點(diǎn),a2=b2+1.由可得a=2,b=1,故橢圓C的方程為x22+y2=1.(2)過(guò)點(diǎn)E取兩條分別垂直于x軸和y軸的弦M1N1,M2N2,則1|EM1|2+1|EN1|2=1|EM2|2+1|EN2|2,即21-x022=1(x0+2)2+1(x0-2)2,解得x0=63,E若存在必為63,0,定值為3.證明如下:設(shè)過(guò)點(diǎn)E63,0的直線方程為x=ty+63,代入C中得(t2+2)y2+263ty-43=0.設(shè)M(x1,y1),N(x2,y2),則y1+y2=-263tt2+2=-26t3(t2+2),y1y2=-43(t2+2),1|EM|2+1|EN|2=1(1+t2)y12+1(1+t2)y22=11+t21y12+1y22=11+t2(y1+y2)2-2y1y2y12y22=11+t2-26t3(t2+2)2+83(t2+2)-43(t2+2)2=3.綜上得定點(diǎn)為E63,0,定值為3.二、思維提升訓(xùn)練9.證明 (1)設(shè)A(x1,y1),B(x2,y2),則x124+y123=1,x224+y223=1.兩式相減,并由y1-y2x1-x2=k得x1+x24+y1+y23k=0.由題設(shè)知x1+x22=1,y1+y22=m,于是k=-34m.由題設(shè)得0<m<32,故k<-12.(2)由題意得F(1,0).設(shè)P(x3,y3),則(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及題設(shè)得x3=3-(x1+x2)=1,y3=-(y1+y2)=-2m<0.又點(diǎn)P在C上,所以m=34,從而P1,-32,|FP|=32.于是|FA|=(x1-1)2+y12=(x1-1)2+31-x124=2-x12.同理|FB|=2-x22.所以|FA|+|FB|=4-12(x1+x2)=3.故2|FP|=|FA|+|FB|.10.(1)解 由已知,a=2b.又橢圓x2a2+y2b2=1(a>b>0)過(guò)點(diǎn)P3,12,故34b2+14b2=1,解得b2=1.所以橢圓E的方程是x24+y2=1.(2)證明 設(shè)直線l的方程為y=x+m(m0),A(x1,y1),B(x2,y2),由方程組x24+y2=1,y=12x+m,得x2+2mx+2m2-2=0,方程的判別式為=4(2-m2).由>0,即2-m2>0,解得-2<m<2.由得x1+x2=-2m,x1x2=2m2-2.所以M點(diǎn)坐標(biāo)為-m,m2,直線OM方程為y=-12x.由方程組x24+y2=1,y=-12x,得C-2,22,D2,-22.所以|MC|MD|=52(-m+2)52(2+m)=54(2-m2).又|MA|MB|=14|AB|2=14(x1-x2)2+(y1-y2)2=516(x1+x2)2-4x1x2=5164m2-4(2m2-2)=54(2-m2).所以|MA|MB|=|MC|MD|.11.解 (1)設(shè)橢圓的半焦距為c.因?yàn)闄E圓E的離心率為12,兩準(zhǔn)線之間的距離為8,所以ca=12,2a2c=8,解得a=2,c=1,于是b=a2-c2=3,因此橢圓E的標(biāo)準(zhǔn)方程是x24+y23=1.(2)由(1)知,F1(-1,0),F2(1,0).設(shè)P(x0,y0),因?yàn)镻為第一象限的點(diǎn),故x0>0,y0>0.當(dāng)x0=1時(shí),l2與l1相交于F1,與題設(shè)不符.當(dāng)x01時(shí),直線PF1的斜率為y0x0+1,直線PF2的斜率為y0x0-1.因?yàn)閘1PF1,l2PF2,所以直線l1的斜率為-x0+1y0,直線l2的斜率為-x0-1y0,從而直線l1的方程:y=-x0+1y0(x+1),直線l2的方程:y=-x0-1y0(x-1).由,解得x=-x0,y=x02-1y0,所以Q-x0,x02-1y0.因?yàn)辄c(diǎn)Q在橢圓上,由對(duì)稱性,得x02-1y0=y0,即x02-y02=1或x02+y02=1.又P在橢圓E上,故x024+y023=1.由x02-y02=1,x024+y023=1,解得x0=477,y0=377;x02+y02=1,x024+y023=1,無(wú)解.因此點(diǎn)P的坐標(biāo)為477,377.

注意事項(xiàng)

本文(2019年高考數(shù)學(xué)二輪復(fù)習(xí) 專題六 直線、圓、圓錐曲線 專題能力訓(xùn)練17 直線與圓錐曲線 文.doc)為本站會(huì)員(tian****1990)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!