2019-2020年北師大版選修2-1高中數(shù)學(xué)2.2.1《橢圓及其標準方程》word教案.doc
-
資源ID:6174113
資源大?。?span id="kkoc8ac" class="font-tahoma">37KB
全文頁數(shù):4頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2019-2020年北師大版選修2-1高中數(shù)學(xué)2.2.1《橢圓及其標準方程》word教案.doc
2019-2020年北師大版選修2-1高中數(shù)學(xué)2.2.1橢圓及其標準方程word教案 知識與技能目標理解橢圓的概念,掌握橢圓的定義、會用橢圓的定義解決實際問題;理解橢圓標準方程的推導(dǎo)過程及化簡無理方程的常用的方法;了解求橢圓的動點的伴隨點的軌跡方程的一般方法 過程與方法目標(1)預(yù)習與引入過程當變化的平面與圓錐軸所成的角在變化時,觀察平面截圓錐的截口曲線(截面與圓錐側(cè)面的交線)是什么圖形?又是怎么樣變化的?特別是當截面不與圓錐的軸線或圓錐的母線平行時,截口曲線是橢圓,再觀察或操作了課件后,提出兩個問題:第一、你能理解為什么把圓、橢圓、雙曲線和拋物線叫做圓錐曲線;第二、你能舉出現(xiàn)實生活中圓錐曲線的例子當學(xué)生把上述兩個問題回答清楚后,要引導(dǎo)學(xué)生一起探究P41頁上的問題(同桌的兩位同學(xué)準備無彈性的細繩子一條(約10cm長,兩端各結(jié)一個套),教師準備無彈性細繩子一條(約60cm,一端結(jié)個套,另一端是活動的),圖釘兩個)當套上鉛筆,拉緊繩子,移動筆尖,畫出的圖形是橢圓啟發(fā)性提問:在這一過程中,你能說出移動的筆?。▌狱c)滿足的幾何條件是什么?板書211橢圓及其標準方程(2)新課講授過程(i)由上述探究過程容易得到橢圓的定義板書把平面內(nèi)與兩個定點,的距離之和等于常數(shù)(大于)的點的軌跡叫做橢圓(ellipse)其中這兩個定點叫做橢圓的焦點,兩定點間的距離叫做橢圓的焦距即當動點設(shè)為時,橢圓即為點集(ii)橢圓標準方程的推導(dǎo)過程提問:已知圖形,建立直角坐標系的一般性要求是什么?第一、充分利用圖形的對稱性;第二、注意圖形的特殊性和一般性關(guān)系 無理方程的化簡過程是教學(xué)的難點,注意無理方程的兩次移項、平方整理 設(shè)參量的意義:第一、便于寫出橢圓的標準方程;第二、的關(guān)系有明顯的幾何意義 類比:寫出焦點在軸上,中心在原點的橢圓的標準方程(iii)例題講解與引申例1 已知橢圓兩個焦點的坐標分別是,并且經(jīng)過點,求它的標準方程分析:由橢圓的標準方程的定義及給出的條件,容易求出引導(dǎo)學(xué)生用其他方法來解另解:設(shè)橢圓的標準方程為,因點在橢圓上,則例2 如圖,在圓上任取一點,過點作軸的垂線段,為垂足當點在圓上運動時,線段的中點的軌跡是什么?分析:點在圓上運動,由點移動引起點的運動,則稱點是點的伴隨點,因點為線段的中點,則點的坐標可由點來表示,從而能求點的軌跡方程引申:設(shè)定點,是橢圓上動點,求線段中點的軌跡方程解法剖析:(代入法求伴隨軌跡)設(shè),;(點與伴隨點的關(guān)系)為線段的中點,;(代入已知軌跡求出伴隨軌跡),點的軌跡方程為;伴隨軌跡表示的范圍例3如圖,設(shè),的坐標分別為,直線,相交于點,且它們的斜率之積為,求點的軌跡方程分析:若設(shè)點,則直線,的斜率就可以用含的式子表示,由于直線,的斜率之積是,因此,可以求出之間的關(guān)系式,即得到點的軌跡方程解法剖析:設(shè)點,則,;代入點的集合有,化簡即可得點的軌跡方程引申:如圖,設(shè)的兩個頂點,頂點在移動,且,且,試求動點的軌跡方程引申目的有兩點:讓學(xué)生明白題目涉及問題的一般情形;當值在變化時,線段的角色也是從橢圓的長軸圓的直徑橢圓的短軸 情感、態(tài)度與價值觀目標通過作圖展示與操作,必須讓學(xué)生認同:圓、橢圓、雙曲線和拋物線都是圓錐曲線,是因它們都是平面與圓錐曲面相截而得其名;必須讓學(xué)生認同與體會:橢圓的定義及特殊情形當常數(shù)等于兩定點間距離時,軌跡是線段;必須讓學(xué)生認同與理解:已知幾何圖形建立直角坐標系的兩個原則,及引入?yún)⒘康囊饬x,培養(yǎng)學(xué)生用對稱的美學(xué)思維來體現(xiàn)數(shù)學(xué)的和諧美;讓學(xué)生認同與領(lǐng)悟:例1使用定義解題是首選的,但也可以用其他方法來解,培養(yǎng)學(xué)生從定義的角度思考問題的好習慣;例2是典型的用代入法求動點的伴隨點的軌跡,培養(yǎng)學(xué)生的辯證思維方法,會用分析、聯(lián)系的觀點解決問題;通過例3培養(yǎng)學(xué)生的對問題引申、分段討論的思維品質(zhì)能力目標(1) 想象與歸納能力:能根據(jù)課程的內(nèi)容能想象日常生活中哪些是橢圓、雙曲線和拋物線的實際例子,能用數(shù)學(xué)符號或自然語言的描述橢圓的定義,能正確且直觀地繪作圖形,反過來根據(jù)圖形能用數(shù)學(xué)術(shù)語和數(shù)學(xué)符號表示(2) 思維能力:會把幾何問題化歸成代數(shù)問題來分析,反過來會把代數(shù)問題轉(zhuǎn)化為幾何問題來思考,培養(yǎng)學(xué)生的數(shù)形結(jié)合的思想方法;培養(yǎng)學(xué)生的會從特殊性問題引申到一般性來研究,培養(yǎng)學(xué)生的辯證思維能力(3) 實踐能力:培養(yǎng)學(xué)生實際動手能力,綜合利用已有的知識能力(4) 數(shù)學(xué)活動能力:培養(yǎng)學(xué)生觀察、實驗、探究、驗證與交流等數(shù)學(xué)活動能力(5) 創(chuàng)新意識能力:培養(yǎng)學(xué)生思考問題、并能探究發(fā)現(xiàn)一些問題的能力,探究解決問題的一般的思想、方法和途徑