創(chuàng)新設(shè)計(全國通用)高考數(shù)學(xué)二輪復(fù)習(xí) 專題七 選考系列 第1講 坐標(biāo)系與參數(shù)方程課件 理
-
資源ID:51888131
資源大小:1.96MB
全文頁數(shù):26頁
- 資源格式: PPT
下載積分:10積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
創(chuàng)新設(shè)計(全國通用)高考數(shù)學(xué)二輪復(fù)習(xí) 專題七 選考系列 第1講 坐標(biāo)系與參數(shù)方程課件 理
第1講坐標(biāo)系與參數(shù)方程(選修44)高考定位高考主要考查平面直角坐標(biāo)系中的伸縮變換、直線和圓的極坐標(biāo)方程;參數(shù)方程與普通方程的互化,常見曲線的參數(shù)方程及參數(shù)方程的簡單應(yīng)用.以極坐標(biāo)、參數(shù)方程與普通方程的互化為主要考查形式,同時考查直線與曲線位置關(guān)系等解析幾何知識.真真 題題 感感 悟悟a1時,極點也為C1,C2的公共點,在C3上.所以a1.考考 點點 整整 合合1.直角坐標(biāo)與極坐標(biāo)的互化2.直線的極坐標(biāo)方程3.圓的極坐標(biāo)方程4.直線的參數(shù)方程5.圓的參數(shù)方程6.圓錐曲線的參數(shù)方程熱點一極坐標(biāo)與直角坐標(biāo)的互化及極坐標(biāo)的應(yīng)用【例1】 (2015全國卷)在直角坐標(biāo)系xOy中,直線C1:x2,圓C2:(x1)2(y2)21,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.探究提高解決這類問題一般有兩種思路,一是將極坐標(biāo)方程化為直角坐標(biāo)方程,求出交點的直角坐標(biāo),再將其化為極坐標(biāo);二是將曲線的極坐標(biāo)方程聯(lián)立,根據(jù)限制條件求出極坐標(biāo).要注意題目所給的限制條件及隱含條件.(1)寫出曲線C的直角坐標(biāo)方程,并求點M,N的極坐標(biāo);(2)設(shè)MN的中點為P,求直線OP的極坐標(biāo)方程.熱點二參數(shù)方程與普通方程的互化及參數(shù)方程的應(yīng)用(1)寫出曲線C的參數(shù)方程,直線l的普通方程;(2)過曲線C上任一點P作與l夾角為30的直線,交l于點A,求|PA|的最大值與最小值.探究提高化參數(shù)方程為普通方程的基本思路是消去參數(shù),常用的消參方法有代入消去法、加減消去法、恒等式(三角的或代數(shù)的)消去法,參數(shù)方程通過代入消元或加減消元消去參數(shù)化為普通方程,不要忘了參數(shù)的范圍.熱點三極坐標(biāo)與參數(shù)方程的綜合應(yīng)用【例3】 (2016全國卷)在直角坐標(biāo)系xOy中,圓C的方程為(x6)2y225.探究提高高考中該部分的試題是綜合性的,題目中既有極坐標(biāo)的問題,也有參數(shù)方程的問題,考生既可以通過極坐標(biāo)解決,也可以通過直角坐標(biāo)解決,但大多數(shù)情況下,把極坐標(biāo)問題轉(zhuǎn)化為直角坐標(biāo)問題,把參數(shù)方程轉(zhuǎn)化為普通方程更有利于在一個熟悉的環(huán)境下解決問題.要重視把極坐標(biāo)問題化為直角坐標(biāo)問題,把參數(shù)方程化為普通方程的思想意識的形成,這樣可以減少由于對極坐標(biāo)和參數(shù)方程理解不到位造成的錯誤.(1)過P向圓C引切線,切點為F,求|PF|的最小值;(2)射線OP交圓C于R,點Q在OP上,且滿足|OP|2|OQ|OR|,求Q點軌跡的極坐標(biāo)方程.1.在已知極坐標(biāo)方程求曲線交點、距離、線段長等幾何問題時,如果不能直接用極坐標(biāo)解決,或用極坐標(biāo)解決較麻煩,可將極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程解決.2.要熟悉常見曲線的參數(shù)方程、極坐標(biāo)方程,如:圓、橢圓、雙曲線、拋物線以及過一點的直線,在研究直線與它們的位置關(guān)系時常用的技巧是轉(zhuǎn)化為普通方程解答.