高考數(shù)學(xué)文復(fù)習(xí)檢測(cè):第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 課時(shí)作業(yè)15 Word版含答案
高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5課時(shí)作業(yè)15導(dǎo)數(shù)與函數(shù)的極值、最值一、選擇題1當(dāng)函數(shù)yx2x取極小值時(shí),x()A. BCln2 Dln2解析:y2xx2xln20,x.答案:B2函數(shù)f(x)x33x22在區(qū)間1,1上的最大值是()A2 B0C2 D4解析: f(x)3x26x,令f(x)0,得x0或2.f(x)在1,0)上是增函數(shù),f(x)在(0,1上是減函數(shù)f(x)maxf(x)極大值f(0)2.答案:C3已知函數(shù)f(x)x3ax2bxa27a在x1處取得極大值10,則的值為()A B2C2或 D2或解析:由題意知,f(x)3x22axb,f(1)0,f(1)10,即解得或經(jīng)檢驗(yàn)滿足題意,故,選A.答案:A4若函數(shù)f(x)ax3bx2cxd有極值,則導(dǎo)函數(shù)f(x)的圖象不可能是()解析:若函數(shù)f(x)ax3bx2cxd有極值,則此函數(shù)在某點(diǎn)兩側(cè)的單調(diào)性相反,也就是說(shuō)導(dǎo)函數(shù)f(x)在此點(diǎn)兩側(cè)的導(dǎo)函數(shù)值的符號(hào)相反,所以導(dǎo)函數(shù)的圖象要穿過(guò)x軸,觀察四個(gè)選項(xiàng)中的圖象只有D項(xiàng)是不符合要求的,即f(x)的圖象不可能是D.答案:D5(20xx唐山質(zhì)檢)若函數(shù)yx3x2a在1,1上有最大值3,則該函數(shù)在1,1上的最小值是()A B0C. D1解析:令y3x23x3x(x1)>0,解得x>1或x<0,令y<0,解得0<x<1,所以當(dāng)x1,1時(shí),1,0函數(shù)增,0,1函數(shù)減,所以當(dāng)x0時(shí),函數(shù)取得最大值f(0)a3,yx3x23,f(1),f(1),所以最小值是f(1).故選C.答案:C6若函數(shù)f(x)x33x在(a,6a2)上有最小值,則實(shí)數(shù)a的取值范圍是()A(,1) B,1)C2,1) D(,2解析:f(x)3x230,得x1,且x1為函數(shù)的極小值點(diǎn),x1為函數(shù)的極大值點(diǎn)函數(shù)f(x)在區(qū)間(a,6a2)上有最小值,則函數(shù)f(x)極小值點(diǎn)必在區(qū)間(a,6a2)內(nèi),即實(shí)數(shù)a滿足a<1<6a2且f(a)a33af(1)2.解a<1<6a2,得<a<1,不等式a33af(1)2,即a33a20,即a313(a1)0,即(a1)(a2a2)0,即(a1)2(a2)0,即a2.故實(shí)數(shù)a的取值范圍是2,1)故選C.答案:C二、填空題7函數(shù)f(x)x23x4在0,2上的最小值是_解析:f(x)x22x3,令f(x)0得x1(x3舍去),又f(0)4,f(1),f(2),故f(x)在0,2上的最小值是f(1).答案:8函數(shù)f(x)ax3x恰有三個(gè)單調(diào)區(qū)間,則a的取值范圍是_解析:f(x)ax3x恰有三個(gè)單調(diào)區(qū)間,即函數(shù)f(x)恰有兩個(gè)極值點(diǎn),即f(x)0有兩個(gè)不等實(shí)根因?yàn)閒(x)ax3x,所以f(x)3ax21.要使f(x)0有兩個(gè)不等實(shí)根,則a<0.答案:(,0)9(20xx淄博聯(lián)考)已知函數(shù)f(x)x3mx2(m6)x1存在極值,則實(shí)數(shù)m的取值范圍為_(kāi)解析:因?yàn)楹瘮?shù)f(x)x3mx2(m6)x1存在極值,所以f(x)3x22mxm60,它有兩個(gè)不相等的實(shí)根,所以4m212(m6)>0,解得m<3或m>6.答案:(,3)(6,)三、解答題10設(shè)函數(shù)f(x)alnxbx2(x>0),若函數(shù)f(x)在x1處與直線y相切(1)求實(shí)數(shù)a,b的值;(2)求函數(shù)f(x)在上的最大值解:(1)f(x)2bx(x>0),函數(shù)f(x)在x1處與直線y相切,解得(2)f(x)lnxx2,f(x)x,當(dāng)xe時(shí),令f(x)>0得x<1;令f(x)<0,得1<xe,f(x)在上單調(diào)遞增,在1,e上單調(diào)遞減,f(x)maxf(1).11已知函數(shù)f(x).(1)若函數(shù)f(x)在區(qū)間(a,a)(其中a>0)上存在極值,求實(shí)數(shù)a的取值范圍;(2)如果當(dāng)x1時(shí),不等式f(x)恒成立,求實(shí)數(shù)m的取值范圍解:(1)因?yàn)楹瘮?shù)f(x),且定義域?yàn)閤|x>0,所以f(x).當(dāng)0<x<1時(shí),f(x)>0;當(dāng)x>1時(shí),f(x)<0,f(x)在(0,1)上單調(diào)遞增;在(1,)上單調(diào)遞減,函數(shù)f(x)在x1處取得極大值1.函數(shù)f(x)在區(qū)間(a,a)(其中a>0)上存在極值,解得<a<1.(2)當(dāng)x1時(shí),不等式f(x),即為m.記g(x),g(x).令h(x)xlnx,則h(x)1,x1,h(x)0,h(x)在1,)上單調(diào)遞增,h(x)minh(1)1>0,從而g(x)>0,故g(x)在1,)上也是單調(diào)遞增,g(x)ming(1)2,m2.1已知yf(x)是奇函數(shù),當(dāng)x(0,2)時(shí),f(x)lnxax,當(dāng)x(2,0)時(shí),f(x)的最小值為1,則a的值等于()A2 B3C4 D1解析:由題意知,當(dāng)x(0,2)時(shí),f(x)的最大值為1.令f(x)a0,得x,當(dāng)0<x<時(shí),f(x)>0;當(dāng)x>時(shí),f(x)<0.所以f(x)maxflna11,解得a1.答案:D2(20xx安徽模擬)已知函數(shù)f(x)k,若x2是函數(shù)f(x)的唯一一個(gè)極值點(diǎn),則實(shí)數(shù)k的取值范圍為()A(,e B0,eC(,e) D0,e)解析:f(x)k(x>0)設(shè)g(x),則g(x),則g(x)在(0,1)內(nèi)單調(diào)減,在(1,)內(nèi)單調(diào)增g(x)在(0,)上有最小值,為g(1)e,結(jié)合g(x)與yk的圖象可知,要滿足題意,只需ke,選A.答案:A3設(shè)函數(shù)f(x)x32x5,若對(duì)任意的x1,2,都有f(x)>a,則實(shí)數(shù)a的取值范圍是_解析:f(x)3x2x2,令f(x)0,得3x2x20,解得x1或x,又f(1),f,f(1),故f(x)min,a<.答案:4(20xx山東卷)設(shè)f(x)xlnxax2(2a1)x,aR.()令g(x)f(x),求g(x)的單調(diào)區(qū)間;()已知f(x)在x1處取得極大值,求實(shí)數(shù)a的取值范圍解:()由f(x)lnx2ax2a,可得g(x)lnx2ax2a,x(0,),則g(x)2a.當(dāng)a0時(shí),x(0,)時(shí),g(x)>0,函數(shù)g(x)單調(diào)遞增;當(dāng)a>0時(shí),x(0,)時(shí),g(x)>0,函數(shù)g(x)單調(diào)遞增,x(,)時(shí),函數(shù)g(x)單調(diào)遞減所以當(dāng)a0時(shí),g(x)的單調(diào)增區(qū)間為(0,);當(dāng)a>0時(shí),g(x)的單調(diào)增區(qū)間為(0,),單調(diào)減區(qū)間為(,)()由()知,f(1)0.當(dāng)a0時(shí),f(x)單調(diào)遞增,所以當(dāng)x(0,1)時(shí),f(x)<0,f(x)單調(diào)遞減;當(dāng)x(1,)時(shí),f(x)>0,f(x)單調(diào)遞增所以f(x)在x1處取得極小值,不合題意當(dāng)0<a<時(shí),>1,由()知f(x)在(0,)內(nèi)單調(diào)遞增,可得當(dāng)x(0,1)時(shí),f(x)<0,x(1,)時(shí),f(x)>0.所以f(x)在(0,1)內(nèi)單調(diào)遞減,在(1,)內(nèi)單調(diào)遞增,所以f(x)在x1處取得極小值,不合題意當(dāng)a時(shí),1,f(x)在(0,1)內(nèi)單調(diào)遞增,在(1,)內(nèi)單調(diào)遞減,所以當(dāng)x(0,)時(shí),f(x)0,f(x)單調(diào)遞減,不合題意當(dāng)a>時(shí),0<<1,當(dāng)x(,1)時(shí),f(x)>0,f(x)單調(diào)遞增,當(dāng)x(1,)時(shí),f(x)<0,f(x)單調(diào)遞減,所以f(x)在x1處取得極大值,符合題意綜上可知,實(shí)數(shù)a的取值范圍為a>.