2019-2020年高中數(shù)學(xué)《生活中的優(yōu)化問題舉例》教案4 新人教A版選修2-2.doc
《2019-2020年高中數(shù)學(xué)《生活中的優(yōu)化問題舉例》教案4 新人教A版選修2-2.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《生活中的優(yōu)化問題舉例》教案4 新人教A版選修2-2.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)生活中的優(yōu)化問題舉例教案4 新人教A版選修2-2教學(xué)目標(biāo):1 使利潤最大、用料最省、效率最高等優(yōu)化問題,體會導(dǎo)數(shù)在解決實際問題中的作用2 提高將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力教學(xué)重點:利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題教學(xué)難點:利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題教學(xué)過程:一創(chuàng)設(shè)情景生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題通過前面的學(xué)習(xí),我們知道,導(dǎo)數(shù)是求函數(shù)最大(?。┲档挠辛ぞ哌@一節(jié),我們利用導(dǎo)數(shù),解決一些生活中的優(yōu)化問題二新課講授導(dǎo)數(shù)在實際生活中的應(yīng)用主要是解決有關(guān)函數(shù)最大值、最小值的實際問題,主要有以下幾個方面:1、與幾何有關(guān)的最值問題;2、與物理學(xué)有關(guān)的最值問題;3、與利潤及其成本有關(guān)的最值問題;4、效率最值問題。解決優(yōu)化問題的方法:首先是需要分析問題中各個變量之間的關(guān)系,建立適當(dāng)?shù)暮瘮?shù)關(guān)系,并確定函數(shù)的定義域,通過創(chuàng)造在閉區(qū)間內(nèi)求函數(shù)取值的情境,即核心問題是建立適當(dāng)?shù)暮瘮?shù)關(guān)系。再通過研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得以解決,在這個過程中,導(dǎo)數(shù)是一個有力的工具利用導(dǎo)數(shù)解決優(yōu)化問題的基本思路:建立數(shù)學(xué)模型解決數(shù)學(xué)模型作答用函數(shù)表示的數(shù)學(xué)問題優(yōu)化問題用導(dǎo)數(shù)解決數(shù)學(xué)問題優(yōu)化問題的答案三典例分析例1汽油的使用效率何時最高 我們知道,汽油的消耗量(單位:L)與汽車的速度(單位:km/h)之間有一定的關(guān)系,汽油的消耗量是汽車速度的函數(shù)根據(jù)你的生活經(jīng)驗,思考下面兩個問題:(1) 是不是汽車的速度越快,汽車的消耗量越大?(2) “汽油的使用率最高”的含義是什么?分析:研究汽油的使用效率(單位:L/m)就是研究秋游消耗量與汽車行駛路程的比值如果用表示每千米平均的汽油消耗量,那么,其中,表示汽油消耗量(單位:L),表示汽油行駛的路程(單位:km)這樣,求“每千米路程的汽油消耗量最少”,就是求的最小值的問題 通過大量的統(tǒng)計數(shù)據(jù),并對數(shù)據(jù)進(jìn)行分析、研究,人們發(fā)現(xiàn),汽車在行駛過程中,汽油平均消耗率(即每小時的汽油消耗量,單位:L/h)與汽車行駛的平均速度(單位:km/h)之間有如圖所示的函數(shù)關(guān)系從圖中不能直接解決汽油使用效率最高的問題因此,我們首先需要將問題轉(zhuǎn)化為汽油平均消耗率(即每小時的汽油消耗量,單位:L/h)與汽車行駛的平均速度(單位:km/h)之間關(guān)系的問題,然后利用圖像中的數(shù)據(jù)信息,解決汽油使用效率最高的問題 解:因為 這樣,問題就轉(zhuǎn)化為求的最小值從圖象上看,表示經(jīng)過原點與曲線上點的直線的斜率進(jìn)一步發(fā)現(xiàn),當(dāng)直線與曲線相切時,其斜率最小在此切點處速度約為90因此,當(dāng)汽車行駛距離一定時,要使汽油的使用效率最高,即每千米的汽油消耗量最小,此時的車速約為90從數(shù)值上看,每千米的耗油量就是圖中切線的斜率,即,約為 L例2磁盤的最大存儲量問題計算機(jī)把數(shù)據(jù)存儲在磁盤上。磁盤是帶有磁性介質(zhì)的圓盤,并有操作系統(tǒng)將其格式化成磁道和扇區(qū)。磁道是指不同半徑所構(gòu)成的同心軌道,扇區(qū)是指被同心角分割所成的扇形區(qū)域。磁道上的定長弧段可作為基本存儲單元,根據(jù)其磁化與否可分別記錄數(shù)據(jù)0或1,這個基本單元通常被稱為比特(bit)。為了保障磁盤的分辨率,磁道之間的寬度必需大于,每比特所占用的磁道長度不得小于。為了數(shù)據(jù)檢索便利,磁盤格式化時要求所有磁道要具有相同的比特數(shù)。問題:現(xiàn)有一張半徑為的磁盤,它的存儲區(qū)是半徑介于與之間的環(huán)形區(qū)域(1) 是不是越小,磁盤的存儲量越大?(2) 為多少時,磁盤具有最大存儲量(最外面的磁道不存儲任何信息)?解:由題意知:存儲量=磁道數(shù)每磁道的比特數(shù)。 設(shè)存儲區(qū)的半徑介于與R之間,由于磁道之間的寬度必需大于,且最外面的磁道不存儲任何信息,故磁道數(shù)最多可達(dá)。由于每條磁道上的比特數(shù)相同,為獲得最大存儲量,最內(nèi)一條磁道必須裝滿,即每條磁道上的比特數(shù)可達(dá)。所以,磁盤總存儲量(1) 它是一個關(guān)于的二次函數(shù),從函數(shù)解析式上可以判斷,不是越小,磁盤的存儲量越大(2) 為求的最大值,計算令,解得當(dāng)時,;當(dāng)時,因此時,磁盤具有最大存儲量。此時最大存儲量為例3飲料瓶大小對飲料公司利潤的影響(1)你是否注意過,市場上等量的小包裝的物品一般比大包裝的要貴些?(2)是不是飲料瓶越大,飲料公司的利潤越大?【背景知識】:某制造商制造并出售球型瓶裝的某種飲料瓶子的制造成本是 分,其中 是瓶子的半徑,單位是厘米。已知每出售1 mL的飲料,制造商可獲利 0.2 分,且制造商能制作的瓶子的最大半徑為 6cm問題:()瓶子的半徑多大時,能使每瓶飲料的利潤最大? ()瓶子的半徑多大時,每瓶的利潤最小?解:由于瓶子的半徑為,所以每瓶飲料的利潤是 令 解得 (舍去)當(dāng)時,;當(dāng)時,當(dāng)半徑時,它表示單調(diào)遞增,即半徑越大,利潤越高;當(dāng)半徑時, 它表示單調(diào)遞減,即半徑越大,利潤越低(1) 半徑為cm 時,利潤最小,這時,表示此種瓶內(nèi)飲料的利潤還不夠瓶子的成本,此時利潤是負(fù)值(2) 半徑為cm時,利潤最大換一個角度:如果我們不用導(dǎo)數(shù)工具,直接從函數(shù)的圖像上觀察,會有什么發(fā)現(xiàn)?有圖像知:當(dāng)時,即瓶子的半徑為3cm時,飲料的利潤與飲料瓶的成本恰好相等;當(dāng)時,利潤才為正值當(dāng)時,為減函數(shù),其實際意義為:瓶子的半徑小于2cm時,瓶子的半徑越大,利潤越小,半徑為cm 時,利潤最小說明:四課堂練習(xí)1用總長為14.8m的鋼條制作一個長方體容器的框架,如果所制作的容器的底面的一邊比另一邊長0.5m,那么高為多少時容器的容積最大?并求出它的最大容積(高為1.2 m,最大容積)5課本 練習(xí)五回顧總結(jié)建立數(shù)學(xué)模型1利用導(dǎo)數(shù)解決優(yōu)化問題的基本思路:解決數(shù)學(xué)模型作答用函數(shù)表示的數(shù)學(xué)問題優(yōu)化問題用導(dǎo)數(shù)解決數(shù)學(xué)問題優(yōu)化問題的答案2解決優(yōu)化問題的方法:通過搜集大量的統(tǒng)計數(shù)據(jù),建立與其相應(yīng)的數(shù)學(xué)模型,再通過研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得到解決在這個過程中,導(dǎo)數(shù)往往是一個有利的工具。六布置作業(yè)- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 生活中的優(yōu)化問題舉例 2019-2020年高中數(shù)學(xué)生活中的優(yōu)化問題舉例教案4 新人教A版選修2-2 2019 2020 年高 數(shù)學(xué) 生活 中的 優(yōu)化 問題 舉例 教案 新人 選修
鏈接地址:http://m.appdesigncorp.com/p-2726793.html