2019-2020年高中數(shù)學(xué)《圓的標(biāo)準(zhǔn)方程》教案11新人教A版必修2.doc
-
資源ID:2614359
資源大小:246.50KB
全文頁(yè)數(shù):5頁(yè)
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
2019-2020年高中數(shù)學(xué)《圓的標(biāo)準(zhǔn)方程》教案11新人教A版必修2.doc
2019-2020年高中數(shù)學(xué)圓的標(biāo)準(zhǔn)方程教案11新人教A版必修2(一)教學(xué)目標(biāo)1知識(shí)與技能(1)在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x2 + y2 + Dx + Ey + F = 0表示圓的條件.(2)能通過(guò)配方等手段,把圓的一般方程化為圓的標(biāo)準(zhǔn)方程,能用待定系數(shù)法求圓的方程.(3)培養(yǎng)學(xué)生探索發(fā)現(xiàn)及分析解決問(wèn)題的實(shí)際能力.2過(guò)程與方法通過(guò)對(duì)方程x2 + y2 + Dx + Ey + F = 0表示圓的條件的探究,培養(yǎng)學(xué)生探索發(fā)現(xiàn)及分析解決問(wèn)題的實(shí)際能力.3情感態(tài)度與價(jià)值觀(guān)滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索. (二)教學(xué)重點(diǎn)、難點(diǎn)教學(xué)重點(diǎn):圓的一般方程的代數(shù)特征,一般方程與標(biāo)準(zhǔn)方程間的互化,根據(jù)已知條件確定方程中的系數(shù),D、E、F.教學(xué)難點(diǎn):對(duì)圓的一般方程的認(rèn)識(shí)、掌握和運(yùn)用.(三)教學(xué)過(guò)程教學(xué)環(huán)節(jié)教學(xué)內(nèi)容師生互動(dòng)設(shè)計(jì)意圖課題引入問(wèn)題:求過(guò)三點(diǎn)A (0,0),B (1,1),C (4,2)的圓的方程.利用圓的標(biāo)準(zhǔn)方程解決此問(wèn)題顯然有些麻煩,得用直線(xiàn)的知識(shí)解決又有其簡(jiǎn)單的局限性,那么這個(gè)問(wèn)題有沒(méi)有其它的解決方法呢?帶著這個(gè)問(wèn)題我們來(lái)共同研究圓的方程的另一種形式圓的一般方程.讓學(xué)生帶著問(wèn)題進(jìn)行思考設(shè)疑激趣導(dǎo)入課題.概念形成與深化請(qǐng)同學(xué)們寫(xiě)出圓的標(biāo)準(zhǔn)方程:(x a)2 + (y b)2 = r2,圓心(a,b),半徑r.把圓的標(biāo)準(zhǔn)方程展開(kāi),并整理:x2 + y2 2ax 2by + a2 + b2 r2=0.取D = 2a,E = 2b,F(xiàn) = a2 + b2 r2得x2 + y2 + Dx + Ey+F = 0這個(gè)方程是圓的方程.反過(guò)來(lái)給出一個(gè)形如x2 + y2 + Dx + Ey + F = 0的方程,它表示的曲線(xiàn)一定是圓嗎?把x2 + y2 + Dx + Ey + F = 0配方得(配方過(guò)程由學(xué)生去完成)這個(gè)方程是不是表示圓?(1)當(dāng)D2 + E2 4F0時(shí),方程表示以為圓心,為半徑的圓;(2)當(dāng)D2 + E2 4F = 0時(shí),方程只有實(shí)數(shù)解,即只表示一個(gè)點(diǎn);(3)當(dāng)D2 + E2 4F0時(shí),方程沒(méi)有實(shí)數(shù)解,因而它不表示任何圖形.綜上所述,方程x2 + y2 + Dx + Ey + F = 0表示的曲線(xiàn)不一定是圓.只有當(dāng)D2 + E2 4F0時(shí),它表示的曲線(xiàn)才是圓,我們把形如x2 + y2 + Dx + Ey + F = 0的表示圓的方程稱(chēng)為圓的一般方程.整個(gè)探索過(guò)程由學(xué)生完成,教師只做引導(dǎo),得出圓的一般方程后再啟發(fā)學(xué)生歸納.圓的一般方程的特點(diǎn):(1)x2和y2的系數(shù)相同,不等于0.沒(méi)有xy這樣的二次項(xiàng).(2)圓的一般方程中有三個(gè)特定的系數(shù)D、E、F,因此只要求出這三個(gè)系數(shù),圓的方程就確定了.(3)與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯.通過(guò)學(xué)生對(duì)圓的一般方程的探究,使學(xué)生親身體會(huì)圓的一般方程的特點(diǎn),及二元二次方程表示圓所滿(mǎn)足的條件.應(yīng)用舉例例1 判斷下列二元二次方程是否表示圓的方程?如果是,請(qǐng)求出圓的圓心及半徑.(1)4x2 + 4y2 4x + 12y + 9 = 0(2)4x2 + 4y2 4x + 12y + 11 = 0解析:(1)將原方程變?yōu)閤2 + y2 x + 3y += 0D = 1,E =3,F(xiàn) =.D2 + E2 4F = 10此方程表示圓,圓心(,),半徑r =.(2)將原方程化為x2 + y2 x + 3y += 0D = 1,E =3,F(xiàn) =.D2 + E2 4F = 10此方程不表示圓.學(xué)生自己分析探求解決途徑:用配方法將其變形化成圓的標(biāo)準(zhǔn)形式.運(yùn)用圓的一般方程的判斷方法求解.但是,要注意對(duì)于(1)4x2 + 4y2 4x + 12y + 9 = 0來(lái)說(shuō),這里的D = 1,E = 3,而不是D = 4,E = 12,F(xiàn) = 9. 通過(guò)例題講解使學(xué)生理解圓的一般方程的代數(shù)特征及與標(biāo)準(zhǔn)方程的相互轉(zhuǎn)化更進(jìn)一步培養(yǎng)學(xué)生探索發(fā)現(xiàn)及分析解決問(wèn)題的能力.例2 求過(guò)三點(diǎn)A (0,0),B (1,1),C (4,2)的圓的方程,并求這個(gè)圓的半徑長(zhǎng)和圓心坐標(biāo).分析:據(jù)已知條件,很難直接寫(xiě)出圓的標(biāo)準(zhǔn)方程,而圓的一般方程則需確定三個(gè)系數(shù),而條件恰給出三點(diǎn)坐標(biāo),不妨試著先寫(xiě)出圓的一般方程.解:設(shè)所求的圓的方程為:x2 + y2 + Dx + Ey + F = 0A (0,0),B (1,1),C (4,2)在圓上,所以它們的坐標(biāo)是方程的解.把它們的坐標(biāo)代入上面的方程,可以得到關(guān)于D、E、F的三元一次方程組:即解此方程組,可得:D= 8,E=6,F(xiàn) = 0所求圓的方程為:x2 + y2 8x + 6y = 0;.得圓心坐標(biāo)為(4,3).或?qū)2 + y2 8x + 6y = 0左邊配方化為圓的標(biāo)準(zhǔn)方程,(x 4)2 + (y + 3)2 = 25,從而求出圓的半徑r = 5,圓心坐標(biāo)為(4,3).例2 講完后學(xué)生討論交流,歸納得出使用待定系數(shù)法的一般步驟:1根據(jù)題設(shè),選擇標(biāo)準(zhǔn)方程或一般方程.2根據(jù)條件列出關(guān)于a、b、r或D、E、F的方程組;3解出a、b、r或D、E、F,代入標(biāo)準(zhǔn)方程或一般方程.例3 已知線(xiàn)段AB的端點(diǎn)B的坐標(biāo)是(4,3),端點(diǎn)A在圓上(x + 1)2 + y2 = 4運(yùn)動(dòng),求線(xiàn)段AB的中點(diǎn)M的軌跡方程.解:設(shè)點(diǎn)M的坐標(biāo)是(x,y),點(diǎn)A的坐標(biāo)是(x0,y0)由于點(diǎn)B的坐標(biāo)是(4,3)且M是線(xiàn)段AB中重點(diǎn),所以,于是有x0 = 2x 4,y0 = 2y 3因?yàn)辄c(diǎn)A在圓(x + 1)2 + y2 = 4上運(yùn)動(dòng),所以點(diǎn)A的坐標(biāo)滿(mǎn)足方程(x + 1)2 + y2 = 4,即 (x0 + 1)2 + y02 = 4 把代入,得(2x 4 + 1)2 + (2y 3)2 = 4,整理得所以,點(diǎn)M的軌跡是以為圓心,半徑長(zhǎng)為1的圓.MAxyOB課堂練習(xí):課堂練習(xí)P130第1、2、3題.教師和學(xué)生一起分析解題思路,再由教師板書(shū).分析:如圖點(diǎn)A運(yùn)動(dòng)引起點(diǎn)M運(yùn)動(dòng),而點(diǎn)A在已知圓上運(yùn)動(dòng),點(diǎn)A的坐標(biāo)滿(mǎn)足方程(x + 1)2 + y2 = 4.建立點(diǎn)M與點(diǎn)A坐標(biāo)之間的關(guān)系,就可以建立點(diǎn)M的坐標(biāo)滿(mǎn)足的條件,求出點(diǎn)M的軌跡方程.歸納總結(jié)1圓的一般方程的特征2與標(biāo)準(zhǔn)方程的互化3用待定系數(shù)法求圓的方程4求與圓有關(guān)的點(diǎn)的軌跡教師和學(xué)生共同總結(jié)讓學(xué)生更進(jìn)一步(回顧)體會(huì)知識(shí)的形成、發(fā)展、完善的過(guò)程.課后作業(yè)布置作業(yè):見(jiàn)習(xí)案4.1的第二課時(shí)學(xué)生獨(dú)立完成鞏固深化備選例題例1 下列各方程表示什么圖形?若表示圓,求出圓心和半徑.(1)x2 + y2 + x + 1 = 0;(2)x2 + y2 + 2ac + a2 = 0 (a0);(3)2x2 + 2y2 + 2ax 2ay = 0 (a0).【解析】(1)因?yàn)镈 1,E 0,F(xiàn) 1,所以D2 + E2 4F0 方程(1)不表示任何圖形;(2)因?yàn)镈 2a,E 0,F(xiàn) a2,所以D2 + E2 4F 4a2 4a2 = 0, 所以方程(2)表示點(diǎn)(a,0);(3)兩邊同時(shí)除以2,得x2 + y2 + ax ay = 0,所以D = a,E = a,F(xiàn) = 0. 所以D2 + E2 4F0,所以方程(3)表示圓,圓心為,半徑.點(diǎn)評(píng):也可以先將方程配方再判斷.例2 已知一圓過(guò)P (4,2)、Q(1,3)兩點(diǎn),且在y軸上截得的線(xiàn)段長(zhǎng)為,求圓的方程.【分析】涉及與圓的弦長(zhǎng)有關(guān)的問(wèn)題時(shí),為簡(jiǎn)化運(yùn)算,則利用垂徑直徑定理和由半弦長(zhǎng)、弦心距、半徑所構(gòu)成的三角形解之.【解析】法一:設(shè)圓的方程為:x2 + y2 + Dx + Ey + F = 0 將P、Q的坐標(biāo)分別代入得 令x = 0,由,得y2 + Ey + F = 0 由已知|y1 y2| = ,其中y1,y2是方程的兩根.(y1 y2)2 = (y1 + y2) 4y1y2 = E2 4F = 48 解聯(lián)立成的方程組,得故所求方程為:x2 + y2 2x 12 = 0或x2 + y2 10x 8y + 4 = 0.法二:求得PQ的中垂線(xiàn)方程為x y 1 = 0 所求圓的圓心C在直線(xiàn)上,故設(shè)其坐標(biāo)為(a,a 1),又圓C的半徑 由已知圓C截y軸所得的線(xiàn)段長(zhǎng)為,而圓C到y(tǒng)軸的距離為|a|.代入并將兩端平方,得a2 5a + 5 = 0,解得a1 = 1,a2 = 5.故所求的圓的方程為:(x 1)2 + y2 = 13或(x 5)2 + (y 4)2 = 37.【評(píng)析】(1)在解本題時(shí),為簡(jiǎn)化運(yùn)算,要避開(kāi)直接去求圓和y軸的兩個(gè)交點(diǎn)坐標(biāo),否則計(jì)算要復(fù)雜得多.(2)涉及與圓的弦長(zhǎng)有關(guān)問(wèn)題,常用垂徑定理和由半弦長(zhǎng)、弦心距及半徑所構(gòu)成的直角三角形解之,以簡(jiǎn)化運(yùn)算.例3 已知方程x2 + y2 2(t + 3)x + 2(1 t2)y + 16t4 + 9 = 0表示一個(gè)圓,求(1)t的取值范圍;(2)該圓半徑r的取值范圍.【解析】原方程表示一個(gè)圓的條件是D2 + E2 4F = 4(t + 3)2 + 4(1 t2)2 4(16t 4 + 9)0即7t2 6t 10,(2)