2019-2020年高中數(shù)學(xué) 《兩條直線的位置關(guān)系》教案 北師大版必修2.doc
-
資源ID:2565404
資源大?。?span id="cp1gfzo" class="font-tahoma">33.50KB
全文頁數(shù):3頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。
|
2019-2020年高中數(shù)學(xué) 《兩條直線的位置關(guān)系》教案 北師大版必修2.doc
2019-2020年高中數(shù)學(xué) 兩條直線的位置關(guān)系教案 北師大版必修2三維目標(biāo):知識(shí)與技能:1. 理解點(diǎn)到直線距離公式的推導(dǎo),熟練掌握點(diǎn)到直線的距離公式;能力和方法: 會(huì)用點(diǎn)到直線距離公式求解兩平行線距離情感和價(jià)值:1。 認(rèn)識(shí)事物之間在一定條件下的轉(zhuǎn)化。用聯(lián)系的觀點(diǎn)看問題教學(xué)重點(diǎn):點(diǎn)到直線的距離公式教學(xué)難點(diǎn):點(diǎn)到直線距離公式的理解與應(yīng)用.教學(xué)方法:學(xué)導(dǎo)式教 具:多媒體、實(shí)物投影儀教學(xué)過程一、情境設(shè)置,導(dǎo)入新課:前面幾節(jié)課,我們一起研究學(xué)習(xí)了兩直線的平行或垂直的充要條件,兩直線的夾角公式,兩直線的交點(diǎn)問題,兩點(diǎn)間的距離公式。逐步熟悉了利用代數(shù)方法研究幾何問題的思想方法.這一節(jié),我們將研究怎樣由點(diǎn)的坐標(biāo)和直線的方程直接求點(diǎn)P到直線的距離。 用POWERPOINT打出平面直角坐標(biāo)系中兩直線,進(jìn)行移動(dòng),使學(xué)生回顧兩直線的位置關(guān)系,且在直線上取兩點(diǎn),讓學(xué)生指出兩點(diǎn)間的距離公式,復(fù)習(xí)前面所學(xué)。要求學(xué)生思考一直線上的計(jì)算?能否用兩點(diǎn)間距離公式進(jìn)行推導(dǎo)?兩條直線方程如下:. 二、講解新課:1點(diǎn)到直線距離公式:點(diǎn)到直線的距離為: (1)提出問題在平面直角坐標(biāo)系中,如果已知某點(diǎn)P的坐標(biāo)為,直線0或B0時(shí),以上公式,怎樣用點(diǎn)的坐標(biāo)和直線的方程直接求點(diǎn)P到直線的距離呢?學(xué)生可自由討論。(2)數(shù)行結(jié)合,分析問題,提出解決方案學(xué)生已有了點(diǎn)到直線的距離的概念,即由點(diǎn)P到直線的距離d是點(diǎn)P到直線的垂線段的長.這里體現(xiàn)了“畫歸”思想方法,把一個(gè)新問題轉(zhuǎn)化為 一個(gè)曾今解決過的問題,一個(gè)自己熟悉的問題。畫出圖形,分析任務(wù),理清思路,解決問題。方案一:設(shè)點(diǎn)P到直線的垂線段為PQ,垂足為Q,由PQ可知,直線PQ的斜率為(A0),根據(jù)點(diǎn)斜式寫出直線PQ的方程,并由與PQ的方程求出點(diǎn)Q的坐標(biāo);由此根據(jù)兩點(diǎn)距離公式求出PQ,得到點(diǎn)P到直線的距離為d 此方法雖思路自然,但運(yùn)算較繁.下面我們探討別一種方法方案二:設(shè)A0,B0,這時(shí)與軸、軸都相交,過點(diǎn)P作軸的平行線,交于點(diǎn);作軸的平行線,交于點(diǎn),由得.所以,PPSS由三角形面積公式可知:SPPS所以可證明,當(dāng)A=0時(shí)仍適用這個(gè)過程比較繁瑣,但同時(shí)也使學(xué)生在知識(shí),能力。意志品質(zhì)等方面得到了提高。3例題應(yīng)用,解決問題。例1 求點(diǎn)P=(-1,2)到直線 3x=2的距離。解:d=例2 已知點(diǎn)A(1,3),B(3,1),C(-1,0),求三角形ABC的面積。解:設(shè)AB邊上的高為h,則S= ,AB邊上的高h(yuǎn)就是點(diǎn)C到AB的距離。AB邊所在直線方程為即x+y-4=0。點(diǎn)C到X+Y-4=0的距離為hh=,因此,S=通過這兩道簡單的例題,使學(xué)生能夠進(jìn)一步對(duì)點(diǎn)到直線的距離理解應(yīng)用,能逐步體會(huì)用代數(shù)運(yùn)算解決幾何問題的優(yōu)越性。同步練習(xí):114頁第1,2題。4拓展延伸,評(píng)價(jià)反思。(1) 應(yīng)用推導(dǎo)兩平行線間的距離公式已知兩條平行線直線和的一般式方程為:,:,則與的距離為證明:設(shè)是直線上任一點(diǎn),則點(diǎn)P0到直線的距離為又 即,d 的距離.解法一:在直線上取一點(diǎn)P(,0),因?yàn)?例3 求兩平行線:,:,所以點(diǎn)P到的距離等于與的距離.于是解法二:又.由兩平行線間的距離公式得 四、課堂練習(xí):1, 已知一直線被兩平行線3x+4y-7=0與3x+4y+8=0所截線段長為3。且該直線過點(diǎn)(2,3),求該直線方程。五、小結(jié) :點(diǎn)到直線距離公式的推導(dǎo)過程,點(diǎn)到直線的距離公式,能把求兩平行線的距離轉(zhuǎn)化為點(diǎn)到直線的距離公式六、課后作業(yè):13.求點(diǎn)P(2,-1)到直線2330的距離.14.已知點(diǎn)A(,6)到直線32的距離d=4,求的值:15.已知兩條平行線直線和的一般式方程為:,:,則與的距離為