歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > PPT文檔下載  

二次曲線的仿射理論

  • 資源ID:25579714       資源大?。?span id="s7mtxtr" class="font-tahoma">390KB        全文頁數(shù):13頁
  • 資源格式: PPT        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

二次曲線的仿射理論

一、二階曲線與無窮遠直線的關(guān)系二、二階曲線的中心三、直徑與共軛直徑33 000A 雙曲型拋物型橢圓型相異的實點重合的實點共軛的虛點l= A33的符號仿射不變. 有心:(A 31, A32, A33); 無心:(A31, A32, 0)或(a12,a11,0)或(a22,a12,0).無窮遠直線的極點稱為中心.對非退化二階曲線討論:中心、直徑與共軛直徑、漸近線 三、直徑與共軛直徑1. 定義(1). 直徑仿射定義解幾定義 無窮遠點P的有窮遠極線(過中心的通常直線). 一組平行弦中點的軌跡.(XY, ZP)= 1(2). 共軛直徑 直徑AB的共軛直徑為AB上無窮遠點P 的極線EF(相互通過對方極點的兩直徑). 直徑AB的共軛直徑為平行于AB的弦的中點軌跡EF.(XY, ZP)= 1仿射定義解幾定義(3). 共軛方向:與一對共軛直徑平行的方向.l不是任何二階曲線的直徑! 三、直徑與共軛直徑1. 定義2. 性質(zhì)(1). 有心二階曲線 (i) 的任一對共軛直徑與l一起, 構(gòu)成的一個自極三點形. (ii) 的每一直徑平分與其共軛直徑平行的弦, 且平行于共軛直徑與交點處的兩切線.(2). 拋物線 (i) 的直徑相互平行(l不是拋物線的直徑). (ii) 的任一直徑的極點為其與有窮遠交點處切線上的無窮遠點. (iii) 的任一直徑平分其與有窮遠交點處切線平行的弦. (XY, ZP )= 1. (iv) 拋物線沒有共軛直徑, 將被一直徑平分的弦的方向稱為該直徑的共軛方向. 三、直徑與共軛直徑1. 定義2. 性質(zhì)3. 直徑的方程(1). 有心二階曲線 (i) 直徑的方程. 因為直徑是以的中心為束心的線束中的直線. 以兩特殊直徑參數(shù)表示. 取兩無窮遠點(1,0,0), (0,1,0), 其極線(對應(yīng)的直徑)方程為0: 0: 3232221122 3132121111 xaxaxal xaxaxal即0021 xSxS從而任一直徑l的方程為1 2: 0, (4.37)S Sl k k Rx x 注: k的幾何意義. (4.37)表示的直徑l方程可改寫為:001 321 xSkxSxS這說明l為(1,k,0)的極線. 而(1,k,0)是l的共軛直徑上的無窮遠點, 從而, (4.37)中的參數(shù)k為直徑l的共軛方向(共軛直徑的斜率). 三、直徑與共軛直徑1. 定義2. 性質(zhì)3. 直徑的方程(1). 有心二階曲線 (ii) 兩直徑共軛的條件.設(shè)直徑0: 21 xSkxSl的共軛直徑為l.則l為l上的無窮遠點(a12+ka22,(a11+ka12),0)的極線. 從而l的方程為.0)()( 1211 222121 kaaxSkaaxS即.0 21 xSkxS其中2212 1211 kaa kaak 為l的斜率, 即)40.4()0(0)( 332122211111222 Aaaaakkakka從而, 兩直徑共軛兩直徑的斜率滿足對合方程. 性質(zhì). 在以有心二階曲線的中心為束心的線束中, 直徑與共軛直徑的對應(yīng)是一個對合. 三、直徑與共軛直徑1. 定義2. 性質(zhì)3. 直徑的方程(1). 有心二階曲線(2). 拋物線利用中心坐標, 可直接寫出的直徑方程為.)(0 12113212111 bxaaybbxxaxa 即為常數(shù)或者.)(0 22123222112 bxaaybbxxaxa 即為常數(shù)(a12,a11,0)或(a22,a12,0) 四、漸近線 1. 定義. 二階曲線上無窮遠點處的有窮遠切線稱為其漸近線.注1. 等價定義:過中心的有窮遠切線稱為漸近線.注2. 與漸近線平行的方向稱為漸近方向.注3.雙曲線橢 圓有兩條實虛漸近線, 一對漸近方向;拋物線無漸近線.從而, 漸近線只對有心二階曲線討論. 四、漸近線1. 定義2. 性質(zhì)(1). 漸近線是自共軛的直徑.(2). 在以二階曲線的中心為束心的線束中, 漸近線是對合)40.4()0(0)( 332122211111222 Aaaaakkakka的兩條不變直線. (3). 有心二階曲線的兩漸近線調(diào)和分離其任一對相異的共軛直徑.3. 求漸近線方程設(shè)已知有心二階曲線 )1(0,0|,)(0: 333 1, AaaaxxaS ijjiijji jiij求的漸近線方程.雙曲線雙曲型對合橢 圓橢圓型對合 四、漸近線3. 求漸近線方程設(shè)已知有心二階曲線)1(0,0|,)(0: 333 1, AaaaxxaS ijjiijji jiij求的漸近線方程.法一. 利用對合不變元素. 在)40.4()0(0)( 332122211111222 Aaaaakkakka中, 令k=k得不變元素方程為02 1112222 akaka此方程的兩根即為漸近線方向. 設(shè)兩根為ki(i=1,2), 分別代入021 xSkxS即可得兩漸近線方程. 評注:此法簡單且直接, 但若上述參數(shù)表示中的兩基線之一為漸近線, 則ki中應(yīng)有0或, 實際計算時容易丟失一條漸近線. 四、漸近線3. 求漸近線方程法二. 利用中心和漸近方向. 評注:此法簡單且直接, 只要求出中心的非齊次坐標, 漸近線的方程即可直接寫出(一般可不分解為兩個一次式).得,聯(lián)立 003xS,02 222221122111 xaxxaxa這表示過原點的兩直線, 其上無窮遠點即為與l的交點, 從而它們平行于兩漸近線, 化為非齊次, 得.02 2 2212211 yaxyaxa設(shè)中心的非齊次坐標為(, ). 則漸近線的方程為.0)()(2)( 22212211 yayxaxa 四、漸近線3. 求漸近線方程 法三. 利用切線方程. 漸近線為過中心的切線, 將中心P(A31,A32,A33)代入SppS=S2p, 即得漸近線方程. 現(xiàn)對此法進行整理, 因為 評注:此法推導(dǎo)繁, 實用不繁, 因為在做題時, 首先判斷是否退化, |a ij|已有, 再判斷是否有心, A33也已知, 從而為已知. 332211 xxSxxSxxSS pppp 由于P為中心, 所以上式前二項的系數(shù)等于0, 從而.33 xxSS pp 將中心坐標代入, 得.|)( 33333332323131 xaxAaAaAaS ijp 由此又得.| 33AaS ijpp 從而, 過中心的切線(漸近線)方程為.| 233323233 xaSAxaSAa ijijij 令./| 33Aaij得漸近線方程為.023 xS 今日作業(yè)P.143, 2, 3The Class is over. Goodbye!

注意事項

本文(二次曲線的仿射理論)為本站會員(san****019)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!