(課標專用)天津市高考數(shù)學二輪復習 題型練8 大題專項(六)函數(shù)與導數(shù)綜合問題-人教版高三數(shù)學試題

上傳人:文*** 文檔編號:240557542 上傳時間:2024-04-15 格式:DOCX 頁數(shù):7 大?。?8.97KB
收藏 版權(quán)申訴 舉報 下載
(課標專用)天津市高考數(shù)學二輪復習 題型練8 大題專項(六)函數(shù)與導數(shù)綜合問題-人教版高三數(shù)學試題_第1頁
第1頁 / 共7頁
(課標專用)天津市高考數(shù)學二輪復習 題型練8 大題專項(六)函數(shù)與導數(shù)綜合問題-人教版高三數(shù)學試題_第2頁
第2頁 / 共7頁
(課標專用)天津市高考數(shù)學二輪復習 題型練8 大題專項(六)函數(shù)與導數(shù)綜合問題-人教版高三數(shù)學試題_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(課標專用)天津市高考數(shù)學二輪復習 題型練8 大題專項(六)函數(shù)與導數(shù)綜合問題-人教版高三數(shù)學試題》由會員分享,可在線閱讀,更多相關(guān)《(課標專用)天津市高考數(shù)學二輪復習 題型練8 大題專項(六)函數(shù)與導數(shù)綜合問題-人教版高三數(shù)學試題(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、題型練8 大題專項(六) 函數(shù)與導數(shù)綜合問題  題型練第62頁 ? 1.設(shè)函數(shù)f(x)=[ax2-(4a+1)x+4a+3]ex. (1)若曲線y=f(x)在點(1,f(1))處的切線與x軸平行,求a; (2)若f(x)在x=2處取得極小值,求a的取值范圍. 解:(1)因為f(x)=[ax2-(4a+1)x+4a+3]ex, 所以f'(x)=[2ax-(4a+1)]ex+[ax2-(4a+1)x+4a+3]ex=[ax2-(2a+1)x+2]ex(x∈R). f'(1)=(1-a)e. 由題設(shè)知f'(1)=0,即(1-a)e=0,解得a=1. 此時f(1)=3e≠0,所以a的

2、值為1. (2)由(1)得f'(x)=[ax2-(2a+1)x+2]ex=(ax-1)(x-2)ex. 若a>12,則當x∈1a,2時,f'(x)<0; 當x∈(2,+∞)時,f'(x)>0. 所以f(x)在x=2處取得極小值. 若a≤12,則當x∈(0,2)時,x-2<0,ax-1≤12x-1<0, 所以f'(x)>0. 所以2不是f(x)的極小值點. 綜上可知,a的取值范圍是12,+∞. 2.已知f(x)=ax-ln(-x),x∈[-e,0),其中e是自然對數(shù)的底數(shù),a∈R. (1)當a=-1時,證明:f(x)+ln(-x)x>12. (2)是否存在實數(shù)a,使f(x)

3、的最小值為3?如果存在,求出a的值;如果不存在,請說明理由. (1)證明由題意可知,所證不等式為f(x)>12?ln(-x)x,x∈[-e,0). 因為f'(x)=-1-1x=-x+1x, 所以當-e≤x<-1時,f'(x)<0,此時f(x)單調(diào)遞減; 當-10,此時f(x)單調(diào)遞增. 所以f(x)在區(qū)間[-e,0)內(nèi)有唯一極小值f(-1)=1, 即f(x)在區(qū)間[-e,0)內(nèi)的最小值為1; 令h(x)=12?ln(-x)x,x∈[-e,0), 則h'(x)=ln(-x)-1x2, 當-e≤x<0時,h'(x)≤0,故h(x)在區(qū)間[-e,0)內(nèi)單調(diào)遞

4、減, 所以h(x)max=h(-e)=1e+12<12+12=1=f(x)min. 所以當a=-1時,f(x)+ln(-x)x>12. (2)解假設(shè)存在實數(shù)a,使f(x)=ax-ln(-x)的最小值為3,f'(x)=a-1x,x∈[-e,0). ①若a≥-1e,由于x∈[-e,0),則f'(x)=a-1x≥0, 所以函數(shù)f(x)=ax-ln(-x)在區(qū)間[-e,0)內(nèi)是增函數(shù), 所以f(x)min=f(-e)=-ae-1=3, 解得a=-4e<-1e,與a≥-1e矛盾,舍去. ②若a<-1e,則當-e≤x<1a時,f'(x)=a-1x<0, 此時f(x)=ax-ln(-x)是

5、減函數(shù), 當1a0, 此時f(x)=ax-ln(-x)是增函數(shù), 所以f(x)min=f1a=1-ln-1a=3,解得a=-e2. 綜上①②知,存在實數(shù)a=-e2,使f(x)的最小值為3. 3.已知函數(shù)f(x)=x3+ax2+b(a,b∈R). (1)試討論f(x)的單調(diào)性; (2)若b=c-a(實數(shù)c是與a無關(guān)的常數(shù)),當函數(shù)f(x)有三個不同的零點時,a的取值范圍恰好是(-∞,-3)∪1,32∪32,+∞,求c的值. 解:(1)f'(x)=3x2+2ax, 令f'(x)=0,解得x1=0,x2=-2a3. 當a=0時,因為f'(x)=3

6、x2>0(x≠0), 所以函數(shù)f(x)在區(qū)間(-∞,+∞)內(nèi)單調(diào)遞增; 當a>0時,x∈-∞,-2a3∪(0,+∞)時,f'(x)>0,x∈-2a3,0時,f'(x)<0, 所以函數(shù)f(x)在區(qū)間-∞,-2a3,(0,+∞)內(nèi)單調(diào)遞增,在區(qū)間-2a3,0內(nèi)單調(diào)遞減; 當a<0時,x∈(-∞,0)∪-2a3,+∞時,f'(x)>0,x∈0,-2a3時,f'(x)<0, 所以函數(shù)f(x)在區(qū)間(-∞,0),-2a3,+∞內(nèi)單調(diào)遞增,在區(qū)間0,-2a3內(nèi)單調(diào)遞減. (2)由(1)知,函數(shù)f(x)的兩個極值為f(0)=b,f-2a3=427a3+b, 則函數(shù)f(x)有三個零點等價于f(0

7、)·f-2a3=b427a3+b<0,從而a>0,-427a30時,427a3-a+c>0或當a<0時,427a3-a+c<0. 設(shè)g(a)=427a3-a+c,因為函數(shù)f(x)有三個零點時,a的取值范圍恰好是(-∞,-3)∪1,32∪32,+∞, 則在(-∞,-3)內(nèi)g(a)<0,且在1,32∪32,+∞內(nèi)g(a)>0均恒成立,從而g(-3)=c-1≤0,且g32=c-1≥0,因此c=1. 此時,f(x)=x3+ax2+1-a=(x+1)[x2+(a-1)x+1-a], 因函數(shù)有三個零點,則x2+(a-1)x+1-a

8、=0有兩個異于-1的不等實根,所以Δ=(a-1)2-4(1-a)=a2+2a-3>0,且(-1)2-(a-1)+1-a≠0, 解得a∈(-∞,-3)∪1,32∪32,+∞. 綜上c=1. 4.(2019全國Ⅱ,理20)已知函數(shù)f(x)=ln x-x+1x-1. (1)討論f(x)的單調(diào)性,并證明f(x)有且僅有兩個零點; (2)設(shè)x0是f(x)的一個零點,證明曲線y=ln x在點A(x0,ln x0)處的切線也是曲線y=ex的切線. (1)解f(x)的定義域為(0,1)∪(1,+∞). 因為f'(x)=1x+2(x-1)2>0,所以f(x)在區(qū)間(0,1),(1,+∞)內(nèi)單調(diào)遞增

9、. 因為f(e)=1-e+1e-1<0,f(e2)=2-e2+1e2-1=e2-3e2-1>0, 所以f(x)在區(qū)間(1,+∞)內(nèi)有唯一零點x1,即f(x1)=0. 又0<1x1<1,f1x1=-lnx1+x1+1x1-1=-f(x1)=0, 故f(x)在區(qū)間(0,1)內(nèi)有唯一零點1x1. 綜上,f(x)有且僅有兩個零點. (2)證明因為1x0=e-lnx0,故點B-lnx0,1x0在曲線y=ex上. 由題設(shè)知f(x0)=0,即lnx0=x0+1x0-1, 故直線AB的斜率k=1x0-lnx0-lnx0-x0=1x0-x0+1x0-1-x0+1x0-1-x0=1x0. 曲線y

10、=ex在點B-lnx0,1x0處切線的斜率是1x0,曲線y=lnx在點A(x0,lnx0)處切線的斜率也是1x0,所以曲線y=lnx在點A(x0,lnx0)處的切線也是曲線y=ex的切線. 5.(2019山東煙臺一模)已知函數(shù)f(x)=ex-2ax+3a2e-x(a∈R),其中e=2.718 28…為自然對數(shù)的底數(shù). (1)討論f(x)的單調(diào)性; (2)當x∈(0,+∞)時,ex(x-a)+3a2e-x-x2-a2+10>f(x)恒成立,求a的取值范圍. 解:(1)由題意可知,f'(x)=ex-2a-3a2e-x=e2x-2aex-3a2ex=(ex-3a)(ex+a)ex. 當a=

11、0時,f'(x)=ex>0,此時f(x)在R上單調(diào)遞增; 當a>0時,令f'(x)=0, 解得x=ln(3a), 當x∈(-∞,ln(3a))時,f'(x)<0,f(x)單調(diào)遞減; 當x∈(ln(3a),+∞)時,f'(x)>0,f(x)單調(diào)遞增; 當a<0時,令f'(x)=0, 解得x=ln(-a), 當x∈(-∞,ln(-a))時,f'(x)<0,f(x)單調(diào)遞減; 當x∈(ln(-a),+∞)時,f'(x)>0,f(x)單調(diào)遞增; 綜上可知,當a=0時,f(x)在R上單調(diào)遞增; 當a>0時,x∈(-∞,ln(3a))時,f(x)單調(diào)遞減, x∈(ln(3a),+∞)

12、時,f(x)單調(diào)遞增; 當a<0時,x∈(-∞,ln(-a))時,f(x)單調(diào)遞減,x∈(ln(-a),+∞)時,f(x)單調(diào)遞增. (2)由ex(x-a)+3a2e-x-x2-a2+10>f(x), 可得,ex(x-a-1)-x2+2ax-a2+10>0, 令g(x)=ex(x-a-1)-x2+2ax-a2+10, 只需在x∈(0,+∞)時使g(x)min>0即可. g'(x)=ex(x-a-1)+ex-2x+2a=(ex-2)(x-a), ①當a≤0時,x-a>0.當0ln2時,g'(x)>0, 所以g(x)在區(qū)間(0,ln2)內(nèi)是

13、減函數(shù),在區(qū)間(ln2,+∞)內(nèi)是增函數(shù), 只需g(ln2)=-a2+(2ln2-2)a-(ln2)2+2ln2+8>0, 解得ln2-40,g(0)≥0, 解得00成立; ④當a>ln2時,g(x)在區(qū)間(0,ln2)內(nèi)是增函數(shù),在區(qū)間(ln2,a)內(nèi)是減函數(shù),在

14、區(qū)間(a,+∞)內(nèi)是增函數(shù), 則g(a)=-ea+10>0,g(0)=9-a-a2≥0, 解得ln2

15、,∴b=e. (2)令h(x)=x[f(x)-g(x)]=12x2-(a+e)x+aelnx,則任意x∈1e,+∞,f(x)與g(x)有且只有兩個交點,等價于函數(shù)h(x)在區(qū)間1e,+∞有且只有兩個零點. 由h(x)=12x2-(a+e)x+aelnx, 得h'(x)=(x-a)(x-e)x, ①當a≤1e時,由h'(x)>0得x>e; 由h'(x)<0得1e

16、a)≥12e(e-2)·e2-2e>0(或當x→+∞時,h(x)>0亦可), 所以要使得h(x)在區(qū)間1e,+∞內(nèi)有且只有兩個零點, 則只需h1e=12e2?a+ee+aeln1e=(1-2e2)-2e(1+e2)a2e2≥0, 即a≤1-2e22e(1+e2). ②當1e0得1ee; 由h'(x)<0得ae時,由h'(x)>0得1ea,由h'(x)<0得e

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!