2019-2020年高中數(shù)學(xué) 2.2三角形中的幾何計算教案 北師大版必修5.doc
-
資源ID:2385495
資源大小:63.50KB
全文頁數(shù):4頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2019-2020年高中數(shù)學(xué) 2.2三角形中的幾何計算教案 北師大版必修5.doc
2019-2020年高中數(shù)學(xué) 2.2三角形中的幾何計算教案 北師大版必修5 教學(xué)目的: 1. 能夠正確運用正弦定理、余弦定理等知識、方法解決一些與測量以及幾何計算有關(guān)的實際問題。 2. 通過對全章知識的總結(jié)提高,幫助學(xué)生系統(tǒng)深入地掌握本章知識及典型問題的解決方法。教學(xué)重點、難點: 1。重點:解斜三角形問題的實際應(yīng)用;全章知識點的總結(jié)歸納。 2。難點:如何在理解題意的基礎(chǔ)上將實際問題數(shù)學(xué)化。教學(xué)過程:例題講解:例1. 在ABC中,已知求邊c。 解析:解法1(用正弦定理) 又 當(dāng)A60時,C75 當(dāng)A120時,C15 解法二: 即 解之,得 點評:此類問題求解需要注意解的個數(shù)的討論,比較上述兩種解法,解法2較簡單。 例2. 在ABC中,若B60,2bac,試判斷ABC的形狀。 解析:解法一 由正弦定理,得 B60,A+C120 A120C,代入上式,得 展開,整理得: C60,故A60 ABC為正三角形 解法二 由余弦定理,得 整理,得 從而abc ABC為正三角形 點評:在邊角混合條件下判斷三角形形狀時,可考慮利用邊化角,從角的關(guān)系判斷,也可考慮角化邊,從邊的關(guān)系判斷。 例3. 如圖,在梯形ABCD中,AD/BC,AB5,AC9,BCA30,ADB45,求BD的長。 解析:在ABC中,AB5,AC9,BCA30 由正弦定理,得 AD/BC,BAD180ABC 于是 同理,在ABD中,AB5, ADB45 解得 故BD的長為 點評:求解三角形中的幾何計算問題時,要首先確定與未知量之間相關(guān)聯(lián)的量,把所要求的問題轉(zhuǎn)化為由已知條件可直接求解的量上來。小結(jié): 先由學(xué)生自己總結(jié)解題所得。 由正弦定理可以看出,在邊角轉(zhuǎn)化時,用正弦定理形式更簡單,所以在判斷三角形的形狀時更加常用。但在解題時要注意,對于三角形的內(nèi)角,確定了它的正弦值,要分兩種情況來分析。 而對于余弦定理,因為對于三角形的內(nèi)角,確定了余弦值,角的大小就唯一確定了,所以在解三角形時,涉及到三條邊和角的問題,都可以用余弦定理來解題。而也因為余弦值的這個特點,在判斷一個三角形時銳角、直角或者鈍角三角形時,要借助余弦定理。 對于很多題目,并沒有一個絕對的規(guī)律,我們要對正弦定理,余弦定理深入理解,才能在解題時,根據(jù)問題的具體情況,恰當(dāng)?shù)剡x用定理,運用好的方法解題。運用正弦定理或余弦定理可以進(jìn)行邊角關(guān)系的轉(zhuǎn)化。它們是解決三角形問題的橋梁,因此,在解決問題的過程中,要注意它們的互相運用聯(lián)手解題。